

oes

so —ASMOO:

6809OPTIMIZINGASSEMBLER

VERSION3.2

“USER'SGUIDE

IMPORTANTNOTE
Although every effort has been made to makethesuppl fedSoftware and its documentation as accurate and functional ©a3 possible, Southw a ik esSpecifically disclaims any responsibility for any damagesincurred or generated by such material. Southwest —

roducts Corporation reserves ‘the right to
—

change or revise this material at any time without

west Technical Products Corporation

Technical Products

° | -ASMOS
#09

Copyright1970

‘SouthwestTechnicalProductsCorporation
—_

ALLRIGHTSRESERVED

Tableof Contents.

Preface * s e * Ca ° o e * eo °. * a * * * e s > * . ° e . es * . * * 3 iv

1.0 SHTPCAssembler. 6

0
ee ee ee eee ee ew ee weww ww bed

1.1 Required.Environment eeae ee eeee 1-1
1.2 Assembler Distr ibut fon Oe OO 8 ee ee eos ‘q-1
1.3 CommandSyntax Ce 6 ee ee be ee we ew ee ee 8 1-2
1.4 Options OOO eee ee ee . eo Boe we we8 6 ew wee ee 1-2
1.5 Convers fon ProgramsOe ee ee ee ee 8 ee ee ke 1-4

2.0 Input Language Syntax o © © © 8 ee 6 ee wee eee eee 2-1

2.1 Character Classification 2... 6. ee ee eee we el
252 Identifters wee 8 8 we ew 8 ee 8 ee ee 2-1
2.3 Implicitly Defined Identifters @ “@ ¢ @ @ 8 @ se © e@ 8 8 2-2 °

2.4 Input Statements a ee ee ee ee ee 6 © © © © © © © we 2-3
2.5 CommentStatements Cr ee ee ee er) 2-3
2.6 Source Statements SS SS oe 2=3
2.7 Assembler Directives ee ee ee eee ee eh el 2-6

Table 2.1 7 © &© © © © © 6 & © eo 8 ee hE hlhl lel Hl 2-7
Table 2.2 oe e @- 8 @ . oo © © © © © 6 & 8 we 8 ee eee 2-8 :

Table 2.3 Cr a a eo ry * * © «© @ @ 2-9
Table 2.4 * * 6 © © © © © © 6 ee ee lh le hee 2<9

3.0 6809 Software Architecture Sie ee ee Oe Ce ee ee 3-1

3.1 Arithmetic Registers Ce a oeee eS Se ee Se, 3-1
3.2 Pointer Registers Cr ee ee ee ee2 ee | 3-1
3.3 ProgramCounter Ce ee ee ee ee eee ee Se ee vs owe 3-2
3.4 Condition Flag Register oo 6 Few ee wee wee

*
3=2

3.5 Direct Page Register 8 me 6 Oe 8 ee ee 8 UL 8 eee 3-4
:

3.6 Address ing Modes o . © © & © © © © 8 ee ee 8 ee ee ee} 3-4

4.0 Assembler Expressionsee ee ee ee ee ee | 4-1

4.1 Terms in. Expressions eo ee. 8 8 68 8 ee el ee ew 4-1
4.2 Operators in Assembler Expressions 2... 60 0 0 eee 43
4.3 Grouping Operators . 2... eee ee tw ew we wo bud
4.5 Truth Value Operators . 6. 2 ee ce ew ee we ee Anh
4.6 Relational Operators 2... 6 ee ee ee we www Med
4.7 Bitwise LogicalOperators e .. e ee e s ° e . * * * s * + 4.5
4.8 Shift Operators Oe 8 6 we ee 8 ee eke ek ee ee 4-6
4.9 Logical Connectives . 2. 2 ce ce ee ee ee ee ee MH

Table 4.1... a
oe « 4-8

5.0 6809 Operation Mnemonics .. 2... 6 cee ‘See Bele * e . . «.

5.1 Condition Flags e . o © © & 6 . * © @ © © © © ee 6 ws 5-1]
.

5.2 ExtendedNnemonies * e ¢ 8 8

‘

s. © @© © # © © @© #8 @ ¢ Woe 5al
5 3 6800 FamilyHinemonics eo © @ © 6 ee 8 8 ee ew ee ee 5-1

*

a3

~ti-

6.0. Assembler Directivesae rere 6-1° . ° * * * * » * . *

6-1
6-1
6-1

BSZ ~~ Block Storage of Zeros ...

END -- End of Block... 1.4%.

~ EQU ~- Equate Symbol to Expression
ERR -- Generate an Error...

 ERRIF ~~ Generate a Conditional ErroFAIL -- Generate an Error... .
FCB -- Form Constant Bytes ..

FEC -+ Form entire| Characters

ee

6-2
6-2
6-2
6-4
6-4

6-4
6-4
6-5
6-5

s

*

.

itee

EON
OTe
GON
b+

had

I e ‘Bytes
“LIB- LibraryInclusion...
WAM -- Provide ModuleName. .

6.13 OPT -- Specify |

‘am

Optior
6.14 ORG -- Set froarenCounter Origin

; 6.15 PAG“ Start & New Page eee ee

6.16 PROC -- Begin a Procedure Block .

6.17 PUBLIC ~- Begina Public Dictionary
6.18 QUAL-- Begina QualifiedData Block |
6.19 RMB -- Reserve Memory Bytes... ..

6.20SETDP -- Set Direct Page Pseudo Register6.21 SPC onas Space Listing ee 8 ee 8 ee .

6.22 TTL = - Title . Ee oe es
6.23 USE~- UseProgramCounter Section .. .

eeee
eee
eee

*

.

2

@

Oe

hue
Oe

6-6

»

*

¢

*

>

»

*

.

*

e

*Cee
eer

Be

vs

67
6-8

6-8
eee
ee

Fee
ee

8

8

8

ee

we

8

ee

ee

eee

oe

6

@

88

8

ee

ee

ee

mee
eee
ee

6-9
6-10.

« T-1

ee
re

eee
eee
ere

me

&

eo

Par

eee

eS

ee

ee

eee
oe
ee

ee

ees
Cee

ek

ee

ee

ee

“eo

6

0

©
ew

ee

oe

ewe

6

ee

eee
eee

oo
8

8

@

e!

Cl

e

2

*

e

«

#.

*

*

.
a

s

.

.

on

+

“e.

*

..

.

*

o

ee
ee

.

Pe

ee
a

ee

ee

ee

ee

«

ee
6

e

.

ee

ee

ee

8

ee

ob

ee

ee,

ee
ee
ee

ee

re

ee

oe

ee

ee

eee

>: * * . e » * *8 eee 7.0 Figures...ss ee
BLO AssenblerErrorMessagesee aa a * *. . « * e * *

8.1 MessageFormat B-1

8.2 “Notes se ee ee 7 Ce ce oe ele ele . ee ee 8-1

8.3 s Caution elaiglsa oe eeee oe e oe ee ee 8-1 :

»: 8.4 - WarningMessages See ee ee eee * * - O28 eee ee @ 8-1
8.5 : Error Messages *. “ee 2 6 6 ee ee . oO 8 wm & eee ee 8-2
8.6 . Disastereee

ott

6-2

6-6

6-6

6-8
6-9

8-1

8-20
.

PREFACE

This publication was designed as a reference manual forthe SWTPC 6809 Optimizing Assembler, Version 3. It is notintended as a tutorial on assembly language _ programming,nor fs it intended as a reference on the 6809microprocessor. Although detailed descriptions are
provided for the native - 6809 instructions, these
descriptionsshould not be considered exhaustive. TheMotorola MC6809Programing Manual should be consulted for‘more information on- the 6809. microprocessor. For a

the book COMPUTERORGANIZATIONANDPROGRAMMINGby W. Gear
is an excelTent choice.

ae

tutorial introduction to _assemblylanguage programming,

= Tys

OO

pe

itr,

‘AssemblerUsersGuide _

1.0 = Southwest TechnicalProducts Assembler.

The SWTPC6809resident assembler isa very powerfuldisk assembler.
designed to provide a versatile programming tool. It has many special
features added to support structured programming techniques and enhance

code modularity and readability. In addition, the assembler provides a

- multi-pass optimizer that attemptsto reduce the size and execution. time
of assembled object code. Two options are provided to selectively

disable certain types” “ot optimization in order to reduce the ‘time:es

required for an assembly. :
Suess. :

. le1 - RequiredEnvironment
oe The asscubierruns on a ‘goittiwede“Technical”‘Products6809
microcomputersystemfunning. the FLEX operating system. A minimum of

16K of user memory is required (implying 24K total memory) and provides |
approximately 4.8K of symbol table space. The assembler does not

support a virtual symbol table, so that in systems with limited memory,
it is possible to overflow the symbol table with very large programs.
The assembler requires approximately (8.4 + La) * Ns bytes of. symbol |

. table space, where is is the average number of characters in a symbol :

andNs is ‘thetotal numberof symbols to be ‘keptin the dictionary.
| ‘Both:qualified“dae“structuresand proceduresrequirelarger

(48 byte) entries in ¢ ymbol table, so that the use of many
structures and procedures will somewhat reduce the |amountof available |

- Symbol table space. Similarly, each level of library inclusion requires —
a buffer area (336 bytes) dn the symbol table, and will also reduce the —
amount of available ‘symbol

processed.
1.2 + AssemblerDistribution.

‘TheASMO9programis distributedon FlexformatSeinch and 8=inch.
floppy disk. The disk contains the Flex operating system, the "CAT",

—“CoPy", "NEWDISK",and "LINE" utility programs (to enable
¥ daplteationof S

the disk), and the four suppliedassemblerfilesi 0 =

~tagMo9.cHD"The‘mainassembler comaansdfile. ey

“ASMOS.CMV"The: assembler symbol table overlay. 9

“MIKCV.CMD"The binary file to Mikbug format converter.
-

SBINCY.CMD"The Mikbugformat to binaryfile converter.
Theansenbleteoriaandfile and evetingmay be. renuned:-as: tong a

the —command ‘file and the overlay file are given the same name. For
example, if the commandfile were named "ASM.CMD",the overlay name ~

would then be "“ASM.CHV". If the overlay file is not renamed, the

assembler will be unableto. producean addressfile or a

syabolsais.S listing.

_ 1-1 =

1 table space. Note that this space is —
required for each | level | of inclusion,not for each inclusion file

Assembler Users Guide

1.3 ~ Assembler Command Syntax

The general syntax of the ASM09 command is:

+++ASM09 <input file> [,<output file>] [,+<option list>]

The first file specification is the name of the file to be assembled.
This file specification is required. The second file specification is
the name of the binary file to be generated by the assembler. Tf no-
output file is specified, ita name defaults. to that of the input. file.
If the output file extension is not. specified, it defaults to "BIN".
If the specified output file already exists on disk, the old file will —
be . automatically deleted and replaced by the new file. Assembler

options are specified on the command’ line by placing them after a plus
sign, to separate them from file specifications.

1.4 + Assembler Options

The option list consists of singlecharacters,optionallyseparated_

by commas, and terminated by. a carriage return or FLEX end of line
character. The options that may be specified are listed below:

A - Generate AddressFile. The "a" option will cause the
assembler symbol table overlay to generate an external symbol
address file. Only those symbols defined as entry pointstoo

the global dictionarywill be included.

B- Suppress binary output The "B" option will sop 5
generation of a binary output file. If the binary file

already exists on disk, it will not be deleted.

C
- Suppress Cautions. The "C" option will euppressall caution

messages produced by the assembler.

E- Suppress Error Messages. The "EB"optionwill scojede'all
error, warning, and caution messages produced by the —

assembler. Since all diagnostic messages produced by the
assembler are suppressed,- it is possible that errors in the
source program beingassembledwill go undetected by the users

F- Optimize AssenblyTime. The "F" option will cause the
assembler to suppress any optimization of object code.
Foreward references will be assembled “using the least oe
restrictive addressing modes. . This. option will force the.
assembler to complete in two passes, but ‘object.. code may. be

considerably larger than required. This option is especially
useful while debugging a program which will later be

optimized. Note that the "R" option takes priority over thisoption in the determination of ‘branchlengths.

G = Enable generated - eode output. The "G" option will cause the
 __

assembler to print all generated binary object code. If this
option is not specified, the assembler will print up to eight
bytes of object code on the same line as the source statement

AssemblerUsers Guide

and then “suppressany additional printed output. Note that
this option does not affect the binary file produced»

:

:

Suppresslisting. The "L" option will suppress any ‘printed
cutput from the assembler, except for lines containing errors

detected ‘by.the assembler. oe

“SpecifyMotorolaCompatability.“the yn

»

Spttonwill”-gupresa.
non-Motorola . extended processing. = Index - addressingfy
optimization is” suppressed and branch “range checking

—

ais.)
selected. Alls labels ate. internally truncated to six
characters Of ‘significance.Arithmetic expressions . are
evaluated ‘using| 4 strict left-to-right order. Character
constants revert to the single quote only Motorola format. If

Mikbug format object code is desired, the assemblers binary
output may be convertedusing the MIKCVutilityprogram.
Suppress

- jdne- ‘Musibers.The vgn optionwill cause "the
assembler. to suppress line number output. This option can be.

used to reducethe size of the assemblerlieting.—
- FormatPageOutput . The "p" option will cause ‘asseabler

output to be formatted for a printer. The assembler will ask
for a heading for theassembly, and perform page counting and
title functions. If this option is not specified, the PACEand TITLEmnenonicsare ignored by the assembler. :

meek

Suppress— “Branch©Range. the Mg option | will cause Be
assembler to ‘suppress branch/long branch optimization. | The
assembler ‘normally treats branch and long branch mnemonics as

identical, and computes which type of branch is required. |

oethis feature is “suppressed, branches are limited
approximately127bytes range, and an error message will |

be
produced if a range error is detected. This option willoe

normallyreducethe number of optimizationpasses required. ee

Suppress-ayabottable. Whenever- the andenbiet®‘produces an
object code listing, it normally produces a sorted, formatted
listing of its symbol table. ‘The "s" option suppresses this
output. It is not possible to produce a symbol table. _ Mating,

ee

_

withoutproducingan object code listing. eee
fe

Truncate‘Print‘Output. The "Tr" optionwill reduce the Muaben
of bytes © o£ object code per line in order to decrease the a

width of the outputlisting. Together with the "N". option, ~~
othe output width is decreased sufficientlyto obtain printouts)on an eighty column printer.
Print ‘UnnamedDictionaries. The nye optionwill cause the
assembler to print unnamed procedures (ise., procedures WLth aoeee

name of "®PRannn")found in the symbol table. Unnamed
procedures are. normally procedures included from system >

ifbrary ‘files | and are of marginalvalue in the symboltable

13-5

Assembler Users Guide

W = Suppress Warnings. The "W" option will suppress all warningand caution messagesproduced by the assembler.

1.5 =

ConversionPrograms
The output of the assembler ‘programis a binary file in a format

suitable for the system loader. This format is compact and efficient,
but it is not compatable with the Mikbugpaper tape format object code

required by several prom monitors and cassette tape interfaces. Two

utility programs have been provided to convert from binary format to

Mikbug format and conversly.
TheMIKCVprogram converts a binary file (such as is output) from

the assembler) into a text file in Mikbug format. Similarly, the BINCV

program will convert a Mikbugformat text file into a binary file, at a

significant savings in disk space and executiontime. The syntax of the
two commands is as follows:

-++HIKCV <input file>, <output file>

HHBINCV<input file>, <output file>

In each case, both the input. file specification and the output file
specification are required. For MIKCV, the input file must be a binary.
file (an extension of .BIN is assumed) and the output file must be a
text file (a .TRT extension is assumed). For the BINCV. program, the

input file must be a text file (a .TXT extension is assumed) and the
‘output file must be a binary file (with ah assumed extension of «BIN).
If the output file exists on disk it will automatically be deleted and

replacedwith the new output file...

In ‘general, Mikbug format - files will be approximately2.7‘times
larger than the equivalent binary file. Mikbug format files. output
records .of 16. bytes maximum,and include a transfer address in the
header block. The name of the output file is used as the name placed in
the Mikbug header by MIKCV. ‘The name placed in the Mikbug header is
ignored by the BINCVprogram. :

=

1-4
-

ory,

Assembler Users Guide
__

2.0 ~ Input LanguageSyntax:

Input to. the assemblerconsistsof oneor moredisk files... These

files are expected to be in 8-bit ASCII code, with the sign bit always
set. to zero. These files may be space compressed, and may contain
control characters. The. assembler treats carriage returns, form feeds,
and rubouts as input line delimiters. The horizontal tab character is

.

treated as a white noise character (same asa biank)- All other control ~

charactersare ignoredby the assembler.
wo

Mo

ae

2.1 - CharacterClassifications
‘Eachcharacter in the input stream is. classified into one of four. :

“groups:_alphabetic type characters, numeric type characters,—special —
characters, andSeparator‘characters(whitenoise)«

Alphabetic. type characters‘consistof both upper aad lower case ve
letters, the underbar character, and the backslash character. In

general, the assembler will make a distinction between upper and lower.
case letters in symbols defined by the user, but will not make that.

distinction for symbols defined internally to the assembler. For —
example, user labels “label" and “LABEL”are separate and distinct,

while the register name "IX" is identical to “ix", or for that matter,

"Ix" or "ix". This permite the assembler to be used in either upper or

tower:case: environments:with a maximumof compatability.
Numeric ‘type.chakactaceconsist of the digits zero. chroughnine,

the crosshatch "#", the dollor sign "$", the question mark "?", and the.
at sign "@". It is. important to realize that numeric type characters |
are not necessarily digits. When the assembler is recognising a number, _
the digits in the number start at zero and continue to one' less than the —
number’ s radix. In the case of hexadecimal numbers, the letters A vee
through F. are considereddigits, even though thay are alphabetic type
characters.

‘Special‘gharactere:are used. by the. “assembleras comment or

conditional assembly ‘designators, quoted string delimiters, and as

operators. Since the function of special characters depends heavily upon
the context in which they are encountered, they are cbest documented

along. with the functions bheyperforms
‘Separator‘havacterseonatet.of the horizontal tab character, the

carriage. return character, the rubout character, and the space
character. These characters serve to separate assembler tokens and in

general, have no significance themselves. A special separator character | :

is the semicolon, "3", which besides being a white noise character, is

used to denote the presenceof secondary aseonblersoutce statements.

262 = Identifiers
‘Identifiers. ‘consist of a leadingalphabetictype character,

_

followed by one or more alphabeticor numeric type characters. The ~
maximum length of an identifier permitted by the assembler is. 127

characters, While theminimumlength is two characters. Note that while

= Da] ae

Assembler Users Guide

single-character identifiers are not expressly prohibited, defining
—

identifiers with names like "A" or "B" can lead to unexpected results
when using indexed addwessingmodes. In general, it is considered good
coding practice to use identifiers with names that are contextually
meaningful instead of identifiers with arbitrary and meaningless names.

In certain cases, special terminatingcharactersmay be used to
denote the end of an identifier, for example, the qualified reference
“EMPLOYEE.PENSION"contains the period character as a terminator of the
identifier "EMPLOYEE".The terminatingcharacter is not considered as

part of the identifier; it is considered as part of the qualified.reference. It. is important to understand that characters like the .underbar and the backslash are valid identifier characters and are not
equivalent to special purpose terminator characters. The assembler
treats all characters of an identifier as significant.

Some examples of valididentifiersare?

MONTH -

THISIS A. VERY_LONGIDENTIFIER
\Break\, .

lower case _identifer
task_done?
PLMSSTYLESIDENTIFIER

If the Motorola compatability option has been. selected, the
assembler will internally truncate all identifiers to six characters.

‘If the identifier was originally longer than six characters, the excess _

is simply discarded. No warning is issued unless the truncation process
results in multiple definitnions of a single identifier.
2.3 - Implicitly Defined Identifiers

Assembler initialization places several identifers in the global _
dictionary and assigns their values prior to beginning the first pass. onthe input source file. These identifiers are protected symbols, i.e.,—
any attempt to redefine their value will result in an error message,
with no change in in the identifier value. These implicitly defined —identifiers are as follows:

:

DAY -~ The current day of the month, as two ASCII charactersin’
a sixteen bit value with the star attribute set.

FALSE -- The truth value "FALSE".

MONTH —- The current month of the year, as two ASCII characters in
a sixteen bit value with the star attribute set.

TRUE -~ The truth value "TRUE,

YEAR -~ The last two digits of the current year, as two ASCII
set.

characters in a sixteen bit value with the star attribute

EN

lettin

Pati

character. If paginat

AssemblerUsers Guide —

2h = InputStatements
‘The assembler input consists of ‘one or more files containing

assembler language source statements, assembler directives, and comment
statements. Source statements assemble into actual - machine code

—

instructions, and in general have a one. to one corespondence with -

machine operations. Assembler directives set environmental parameters —

affecting machine code generation, listing format, and dictionary

structure. Comment statements are used to. document and- format. an

assembler — program listing but are otherwise. unprocessed by. the

assembler. Es

wo BES
pe

2.5 = CommentStatements ~

tt getteo

:

fon is selected via the assembler "P" option, the.
plus sign and asterisk. type comments assume a special significance.
Those comments beginning with a plus sign force the assembler to 4 new
page, ae if a PAGE mnemonic had immediately preceded the comment.
Comments beginning with an asterisk cause the assembler to force a new
page if fewer than 14 lines remain on the current page- This facility |

source code from overflowing page boundaries. 4

ds extremely convenient for preventing logically connected| sections of —

2.6 - Source Statements
‘The assembler classifies source statements into primary and

secondary statements according to their position in an input lines
Primary statements begin in column one of. the input line, and are

terminated by a carriage return or a semicolon. If the primary =
statement was terminated with a semicolon, cone or more secondary

__

statements may follow it on the same line, each terminated. by a —

semicolon of carriage return. The only restriction on statementformat =

opti lide, if present, must start by column 30 of the
input record, or be separated from the preceedingfield by only one

space. pe :

ed wien
es ea

is that optional f

2.601- PrimaryStatements
_ Primarystatementsconsistof an label field, anmnemonicoperation =

code field, an operand field, and an comment field. All statement
fields are optional however,an operation code field must be present 1f
an operand field is to be used. Some operations have restrictions on
label and/or operand fields. Notice that a null line is a valid primary —~

statement; as is a line with only a comment (which must begin after

input colum 30). _

Labels, if present; must begin in colum one of a primary
statement, and consist of a valid assembler identifier. The label

should terminate with a space, a period, or a colon. Labels terminating

with a colon are defined: in the. parent dictionary of the current
dictionary and represent explicitly declared entry addresses. Labels

terminating with a period are defined in the global dictionary and

me 930

ementsbeginwitheither a plus sign"+", an asterisk
or a period ".", and are terminated with a carriage return

Assembler Users Guide

represent global definitions. ‘The value of a primary source statementlabel is the value of the program counter at the beginning of statementevaluation, and has. the relocation attributes of the currently activeprogram counter.
-

my te

_

In order to clear up some of the details of the previous —paragraphs, an example of assembly source statements is provided. This —..

Section of code is a subroutine to perform a single bit right arithmeticshift on a multi-byte field. an

wf ES

1. ® : :

ce

2- + SUBROUTINE TO SHIFT A FIELD ONE BIT RIGHT

4- + ENTER WITH X =>. FIELD TOSHIFT5. B = BYTE COUNT OF FIELD6. » ae
.

Ok 7.
. PROC

see Sed0000 A6 84 8. SHIFT: LDA 0,x- GET FIRST BYTE ae

~ 0002 47 9. ASRA SHIFT RIGHT ARITHMETIC.-06003 A7 80 10. STA 0, X+ PUT BACKINMEMORY0005 5A ll. DECB DECREMENTTHE BYTE COUNT0006 A6 84 12. ROTATE LDA 0,x GET NEXTBYTE fe0008 46 13. RORA ROTATERIGHTONEBIT-. 0009 A7. 80 4, STA 0, X+ PUT BACKIN MEMORY_0008 5A 5, DECB DECREMENTBYTE COUNT .000C 26 F8 16. BNE ROTATE CONTINUETILL DONE ~

OOOE 39 17, IS
a

18. END

Lines 1-6 of the above subroutine are commentsexplainingwhat theroutine does and how it is to be ‘parameterized. ©Such comments are, -strictly speaking, unnécessary in that. the assembler ignores them. They =—are provided to benefi Programmers (perhaps yourself) attempting to.
understand the code. . It ig always considered good coding practice to :type a few extra lines to thoroughlydocument. subroutines. Notice that.line 1 is an asterisk-typecomment. This line helps to assure that thisroutine will not cross over a page fold in a printed listing.

Lines 8-17 are assembler source statements and representactual.
|

6809machine instructions. The object codegenerated by the assemblerappears to the left of the line number. The label "SHIFT:"on line 8 isan explicitly declared entry point to the subroutine and has the value0000 (Hex). The "LDA" in line 8 is an assembler mnemonic for "Load _Accumulator". The "0,X" is the operand and signifies indexed addressing =Mode (see addressing modes). The label "ROTATE" on line 12 is a locallabel and has the value 0006 (Hex). It is not defined anywhere outside
labels..

Lines 7 and 18 are assembler directives and are used to delimit the _

of the subroutine and will not conflict with other similarly named

subroutine. For more details on their function, consult the chapter on
aeoS

assembler directives.

fT

Assembler Users Guide

20662 = Secondary Statements

. Secondary statements begin after the semicolon terminating a

primary statement, and consist of a mnemonic operation code field, an

operand field, and a comment field. Labels may not be defined in a

secondary statement. As before, operand and comment fields are

optional. Note that operation codes are required in secondary
Statements. If the Motorola compatabilityoption hae been selected, no
secondary statements will be recognised. A short segment of code
containing secondary statements will serve to illustrate their utility:

LDDs CHERSUM=——i—=“it*«ékceCp the Checkoum
LSRA; ROLB ‘Shift it Left. one Bit

_ ADDD -NEWORD==——sésAddsin' the Next Word —
STD CRERSUM= = Stuff Back in Sun

2.6.3 = MnemonicOperationCodes
|

- Assembler sourcestatement mnemonic operation codes may be 6809
Operation mnemonicslisted Table 2.1, 6800 Family compatability
mnemonics, listed in table 2.2, or 6809 extended mnemonics, listed in Leytable 2.3. The 6809 and6800 Family mnemonics are identical to those
defined byMotorola in the 6809 Programming and Macro Assemblers manual,
publication M68MASR. The6800 Family compatability mnemonics are

provided to simplify the process of upgrading previously written 6800
software to run on the 6809. Note that not all 6800 Familyoperations =
have equivalent 6809 operations, and that the assembler will generateinstruction _-gequences that emulate the 6800 operations. Several

to. simplify syntax for several types of operations.
extendedmnemonics are provided as an aid to structured programming,and

-

‘

For primarystatements,the mnemonicmustbe separated from the
label (1£ any) by at least one separator character. No distinction is_ made between upper case and lower case mnemonics, so that. the mnemonic
for a 6809 no-operation can be either "NOP" or "nop", or for that

Matter, "Nop" or "nOp", ete. In general, each mnemonic code coresponds
_

with a 6809 machine instruction. This assembler also recognises 6800
Family mnemonics, and performs a cross-assembly into functionally _
equivalent 6809instructions.

:

- The 6800Familyoperationshave been included to provide for a
simple and -Yapidupgtade to 6809from other members of the family. In

most cases, the code can simply be reassembled for the 6809. There are
certain functional differences that may create problems. In particular, —the use of constructs like "BNE+12" are likely to be troublesome. In _

any. event, the cross assembled code is likely to be much less effecient,both in terms of time and code space, than code rewritten for the 6809.

266.4 = Operands
__

Source statementoperandfields are required with many of the 6809 =

“mnemonic operations. If present, the operand field must begin beforecolumn 30 of the input statement, or be separated from the mnemonic
field by exactly one space. Operands can consist of register or flag

~ 2n5 =

Assembler Users Guide

designators, addressing mode indicators, and expressions. The exact
format of an operand varies with the addressing mode capabilities of the
particular instruction. A detailed functional description of the
Various 6809 addressing modes is covered in a later chapter of this
publication. Any information in the operand field of instructions ‘that
do not have operands is treated as statement comments
2.6.5 = Statement Comments

Statementcommentsfollow the. operand ‘field (de present)and
continue until the end of statement is encountered. The end of |

_ Statement may be the carriage return at the end of a line, or it may be.

a semicolon character. A semicolon indicates that secondary statements
will follow on the same source.input line.

One complication causedby the ability to have multiple statements
per line is that statement comments (as opposed to comment statements)

©.

may not contain the semicolon character unless certain restrictions arenoted. First, the semicolon should appear after column 30 on the input
©

line, and second, the semicolon should. be followed by at least two eespaces. This will inform the assembler that no more statements may be.
 -

found on this line.

Another consideration that must be noted when. using multiple
_

Statements per line is that it is possible to make the assembler think —that the first statement comment on a line should be treated as a

secondary statement. In order to avoid this difficulty, it is suggested
that the last secondary statement on a line be terminated with a spaceinstead of a semicolon. Some examples of this technique are shown: _

FILL STA 0,X+; DECB; BNE FILL Filla field >
_ ASRA; RORB

a

Shift D-Register Right

2.7. + Assembler Directives.

Assembler directives must always be encountered in the contextof Ae
primary statement, i.e., they must be the only operation appearing onaline of input text. Several directives have restrictions on the

_ presence of label fields and will generate an error message if these _
‘Yestrictions are not met. Similarly, several directives have —restrictions on the presence of operand fields. Assembler directives
‘vary widely in function and are discussed in a separate chapter of this_

document. Valid assembler directives are listed in table 2.4.

“ Qa6 ~

AssemblerUsersGuide

es oe Be

oS me Fable 2.1 =

6809 Assembler Mnemonic OperationCodes

ABX
ADCA.
ADDA

ANDA
—

ASL= ASLA-
ASR ASRA™

Add B to IXR

Add with Carry
Add without Carry
Logical And -

Arithmetic Shift Left
Arithmetic SHift Right

ApcE.
=

ADDB- ADDD
ANDCC

“ASLB

‘ASRB

* * *

* . *

8

.

BCS...

BEQ-
BGE

BET
BHI
BS -

_ BITA-
BLE.
BLT

BMI
BNE
BPL
BRA

BSR

BVS

EXG

INC

NOP

PSHS PSHUPULS
—

ROL.

ROR

LBCC
LBCS|
LBEQ.
LBGE
LBL

‘LBHS:
‘BITE
LBLE-

LBLT
“LBMI
LBNE

- LBPL
- LBRA-

“BRN

LESR
BVG-

LBRN

LBVC:

BZC
BZS.
CLR

CMPA

COM

CWAT
“DEC.
EORA|

LBZC.
LB2S-
CHPB
ee

toe *

 DECA=D

INCA”
IMP

ISR

LDA
LEAS_
LSL
LSR

NEGNEGA

os ¢.

eee

LEAU
LSta
LSRA

eee

ROA

ce

we
we
ae

ee

ee

ee
eee

ee

« i e

* *

ee

ee

eoa

ee
oe

ee

ae

a
a

ee
ee

LEAX
LSLB

SRB
‘NEGB

.)

eee

ORCC

ROLB
RORB

ee

eee
»

oe

.

ae
“

*

.
e.

*
ee

Re
a

ee

er

ee

ee

ee

oe

INCB.

Be
en

es

:

ge
ee

ee

eee
a

ee

a

eo
ee
wee

g:&

Pee

ee

ee
ee
ee

ee

ee

SP

ee
ee
ee

ae

ee

ee

ee
i

ee
ee
eae.

wee
ee.

ee
ee
ee

ae

Peer

ane

ee

ee
Se

Se

oo

oe

ee

ee

eee
ee

ee
ee

ee

ee

ee
ee

a

a

WO
BS

*

a

°

*

Ree
.

‘«

8

ew

*

*

*

2

*

*

*

*

*

s

*

e

.

«

*

*

*

*

*

*

s

2

¢

*

.

e

Dt
eeeeo

eee
eh

Pe

ee

ee
ee

ee
ee,

a

Se
ee

ee

eeea

ee

ee
be
ee

8

ewee

Wyse

ee
ewe

ba)

oe

ee

Ce

ee

ee

ee

ee

ee
ee:

Ce
ee
ee

ee

a

+

*

*.

.

*

*

o

e

.

7°.

¢

s

°

°*

2

*

°*

2-7

°

*

*

*

*

e

*

*

.

.

s

+

2

.

°

*.

*

+.

*

ele

e

.

*

*

*

*

*

°

e

8

*

.

.

o

*

»

»

the

we

ee

ee

ee

Q¢a

ewee
ee
Oe
ew
we

o.
@

@

ee

we

we

oo.

:

ee

ww

ee

ee
ee
ae

eee
eee

Pr

er

cee

ee
ee

er

2

Branch on

Branch on

Branch on

‘Branchon

Branch on

. Branch on

Branch on

‘BitTest
Branch. on

: Branch on
Branch on

“Branch on

Carry Clear
Carry Set

—

Equal ss
Greater or Equal=:

Greater o

Higher oy

Higheror ‘Samene

Less or Equal
Less

Minus —
Not Equal

—

°

e

s

°

*

*

:

e

2

e

.

2?

Pe

eo.

2

*

*

Oe8

ae
a
le
eo
&

*

*

*

.

*

*

we

*

-

Branch on
Branch

» Branch Never : ws

Branch to ‘SubroutineOe

Branch on Overflow Clear
Branch on Overflow Set.

-

Branch on Zero Clear‘Branch on Zero SetClear ae

Compare
Compliment Sos

Conditioned Wait
‘Decimal Adjust

Decrement
Exclusive Or

ExchangeRegisters|
_ inerement ae
_Jump _

- Jump to Subroutine<
Load Register
Load Effective Address |

Logical Shift Left
5

‘Logical Shift ‘RightMultiply.
- Negate

_ No-Operation
~Inclusive Or

- Push ‘Ragisters’| S Ce ts
Pull Registers fromstack oe

|

- Rotate Left :

oe

Rotate Right

Plus

be

ee
eee
le

OR
ee
ee
ee
ae

ee
we

ee
eee}

ee
ee

a

oy

Assembler Users

RTI
RTS

SBCA.
~ SEX

STA

SUBA

SWI.

SYNC
TFR

TST

ABA

ASLD
CBA

CLC

_

CLI

CLV

CPx

‘DES
DEX

“INS

INX —

~ LDAA
~

LSRD

 PSHA

PULA

SEC

SEI
- SEV
- STAA

as
TAP

_9sx
~

WAI

. e . °

SBCB

° ° *

‘STB
SUBB:

SWI2

TSTA

e *

°

e

e

*

°

e

o

*

°

Guide

- Table 2.1 cont’

6809 Assembler Mnemonic OperationCodes
eo 6 es

eo 8 6

eee

e Pd *

st
SUBD
SwI3
eee

eoee

TSTB

ee

@

e

Re

« *

. °

e s

> @

STU

°

°

.

*

eo

e@

€¢

«©

CBeeeI

¢

@

©

8

©

be

«

- Table 2.2 -

e

8

@

38

29.
Ge

«©

«6

°

oe
ce

emg
ee

ee
8

«

«©

*

s

*

*

+

»

e

*

*.

Return from Interrupt .

Return from. Subroutine
Subtract with borrow
Sign: Extend

Store: wg

Subtract. without Carry
Software Interrupt
Synchronize to. Event

Transfer Registers
Test.

.

Supported 6800 Family MnemonicOperation Codes

. ..

PSHX
PULX Oe

we

ee

ew

ee

8

le

ew

ee

es

le

*

°

*

*

€

e

*

a

Oe
ee

8

me

we

8

me

wee

eee
Oe

ow

we

Oe

a

ew

ee

8

ee
a

ee

eee
ae

©

ee

OO

ee
ee

me

eee
ee

ee

©

6

@©

@©

©

#

8

6

vee

8

eB
Oe
ee
el
el

lhl
&mhlUl
le
lel

ltl
kl

8

*

*

*

s

*

s

*

eo

*

e

e

e

2°

e

«

e

e

e

»

°

[8

#8

°

e

ca

s

e

e

Cy

e

2

°

e

*

e

°

e

*

s

*

*

a

e

*

+

°.

*

*

«

*

e

*

e

*

e

= 268 —-

se

@

0.

©

©.
0.6

@.@.
©

@.

@

©

©

€

©

©

«

#

©

CeOe
a

ee
mee,

»

°

*

e

°

*

*

°

@

*

e

*

©

©

©

@

°

s

°

s

e

eo

@

e

*

o

8

@@

e

¢

.

*

©.

*

ee

©

8

©

©

&

©

8.

6

@

©

wf

@

oe

©

8

oe

ee

ee

ee
le

e086
ee

ee

ew

me

8

8

6é

*

e

e

*

e

e

e

e

e

e

.

e

A

*

*

©€

.

e

*

ca

°

e

‘Transfer Accumulators

Add B to A

Arithmetic Left Shift
Compare B to A

Clear Carry
Clear Interrupt. Mask
Clear Overflow _
Compare to Index .

Decrement Stack Pointer
Decrement Index Pointer
Increment Stack Pointer

Increment Index
Load Accumulator
Logical Right Shift = ae
Inclusive Or Accumulator =
Push on System Stack

eee

Pull from System Stack
Set Carry
Set Interrupt Mask
Set Overflow
Store Accumulator

—

Transfer Condition Flags
Transfer Stack and Index
Waitfor Interrupt uF

BSZ

ERR. FCB

FD.
FMB
LIB

OPT
ORG”

- PAG
PROC *

Qua

SETDP
SPC |
TTL
USE

~

GEC .

EWAL 2

EXIT ..

MARK ..

RET os

sce,

END
ENDF

EQU
ERR

+

FCC

e

PUBLIC

4

ee
8

we

ee:

ae

ee

ee

Ee
Oa

LE

ee
we
ew

ee

a

ae

ee

eee.
©
oe
oe

®

Ce

ee

ae
ee
ee
ee

ge

ee

*

oe

eee

Oe

ee
ee

oe:

*:

Oe

eee
ae

ee

ee
*

Oe
ee
ee

Be

a

ee

we

eee

°

*

OO
ww

we

:

*

*

*

ee

8

fe

*

«

‘2

*

*

is ge

oe

ee
we

ee

ee

Ee

re

ee
ee

eee

= ee

eo 8

*@.

oe

se

oe .

eee

eee

ee a

« * ..
6 ee

. ee

Sa ee oe
eee

ewe.

eee

ee, .

oe si
ee 7

oes

ee
ee

* . .

wee

* « «

eee

ele .
eae

* a

‘Extended

BS

BSE

ae

ce

* 9 © 8 6 we

* » ° * * ° . +

e @¢ © @ Ue © «© *&
¢ © @© © te & #8 8

ee e 8 ee ee

ee) 8 ee e

we eee ee

oe eee et Re.

OO ee aw é .

oe

,

oe @ @ @ ¢

oe ©. ee © eee.

. o 8 8 © ew

oe 8 hm hUehlUe Ue Ue

eee os 8 ee ee

ee ee we el

eee ee eee

Coe 8 ee ee

Oe ee 8 ew es

Oe we 8 ee eS

* e © © € ew |e,

8 ee oe we

“@ eo 6 © © & 6

Be ww ew eee

~ Table 2.3 =

* * . * * * * *

oe

oe

®

* e « * *

* 2 ° . * *

*

»

€

*

*

+ *

- Table 2.4 -

Assembler Users Guide

Mnemonic Operation Codes
Clear Condition Codes”
Enable and Wait

Exit from Procedure.
Mark Stack for Procedure.

-

Return with Registers _

Set Condition Codes

Assembler Directives

= 2-9 =

*

.

°

*

*

*

¥

*

°

*

*

oe:

«

*

.

«

*

*

*

.

s

*

*

_ Block Storage of Zeros —
-End of Segment
End of File (Generated)
Equate Value
Generate Error Message
Conditional Error Message

. Form Constant Bytes
. Form: Constant Characters

. Form Double Bytes ;

=

Form Multiple Bytes
Include Library File
Name Module

er

Set Assembler Options-

Begin Program Counter |
Begin New Page
Begin Procedure :
Begin Public Library _

Begin Qualified Structure

‘Reserve MemoryBytes
Set Direct Page Addressing Space- Listing
Provide. Title,

Use

ProgramCounter
—

‘AssemblerUsers Guide_

3-0 - 6809 Software Architecture
: ~The 6809 microprocessor is a stack-oriented, one-address
microprocessor containing two accumulators, four pointer Yegisters, a ve

_ direct page register, anda condition flag register. With the addition
_ of more pointer registers and a powerful complement of addressing modes,

the 6809 is a major improvementover previous 6800 Family processors.Figure 3-1 1s a programming model of the 6809 microprocessor. The _
following paragraphs give a brief description of each register andof

oe much improved performance in multiple-precision operations. The 6809performs all arithmetic operations in two’s complement format. The 6809.

Ue ‘Fegisters, referedto as the "X" and "Y" registers, the user stac

_ g@ries of PUSH and PULLinstructions to facilitate zero addres

how it ts referenced by the programmer when writing assembler sourceeedes oe ae

ne
nen ee

Oe Us.

3s] = ArithmeticRegisters
ae The 6809 has two eight bit accumulators(called the Aand B
- accumulators) that are used to perform arithmetic and logic operations.

For mattyoperations the A. and B accumulators can be treated like a
"

Single sixteen bit accumulator (called the D accumulator), providing.

arithmetic tegisters are refered to by the single letters "A", "B", orS :

Wp, .

aes

|: 362= PointerRegisters
The6809hasfoursixteenbitpointerregistersthat can be used as.

- base addresa registers for indexed mode addressing. There are two index

pointerrefered to as the "Uv"register, and the system stack pointer,S refered ‘to ap the “S" register. The various ‘eombihationswebs He cary
- Andexed odeaddressingallows all four pointer registers to be used as”

-

explicit stack pointers. In addition, the two stack registers have a

} (stack).
Programing. Thesystematackpointeris implicitly used by the 6809.
microprocessorfor subroutine calls and interrupts.

Assembler Users Guide

3-3 - Program Counter

The 6809 maintains an internal sixteen bit program counter register
refered to as the "PC" register. At any given time, the PC register may
be thought of as a pointer to the next instruction to be executed. ~Two
indexed addressing modes are available that utilize the program counter _

for their base address. These addressing modes provide the capability
of writing program modules that are position independent. —

3.4 ~-Condition Flag Register
The Condition Flag Register is conceptually and eight-bit ‘register _that contains the processor condition flags. It is refered to as the

—

"CC" register. The bit positions of the condition register are shown in
figure 3-2. A detailed description of each flag follows.

- ZT ERE oo
gtare ——_—} |

2 Cea |

renamaak —
pk

OVERFLOW
_ 1ROMASK

: ove

HALFCARRY oon
2

3.4.1 - Carry Flag

Bit zero is the carry flag refered to by the single letter "Cc".It
represents the binary carry from an arithmetic or shift type operation.For these operations, the carry flag is an unsigned overflow indicator.In general, move-type and logical operations do not affect the carry ©flag. a te sy "

:
is

364.2 = Two's ComplimentOverflowFlag
Bit one is the two’s complementoverflowflag and is refered to by

the single letter "V". It is set by an operation that causes a two's
complement arithmetic overflow. Loads, stores, and “logical operations
generally clear the overflow flag, while arithmetic operations set it ae
appropriately.

|

Since all 6809 arithmeticoperations are of limited precision
(eight or sixteen bits), it 1s. possible to generate invalid signedresults when performing arithmetic operations. For example, whena
performing an eight bit addition, it is possible to add 75 (base 10)
(01001011 base 2). to 85 (base 10) (01010101 base 2) and get the invalid =result -96 (base 10) (10100000 base 2). What has occured is that the
carry out of the most significant bit (the sign bit) is different from |
the carry into the sign bit, hence the sign (and ©the value) of the .result is invalid. It is under these conditions that the two’s”
complement overflow flag is. set. ©Asanother example, consider

performing an arithmetic left shift on 96 (base 10) (01100000 base 2). >

The result is -64 (base 10) (11000000 base 2). Since the signed result
|

‘

is invalid, the overflowflag is set.
ae

eee Ben

= B2~

Assembler Users Guide

3.4.3 = Zero Flag

Bit two is the zero flag and is refered to by the single letter _"2". It is set whenever the result of an operation is zero. Aftercompare operations, this bit represents the equal condition. After BIT
type operations, this flag represents the state of the tested. bits, —Arithmetic, — load, -. store, and logical operations set this flagappropriately. eee

“Soe gS ge te
eo

aN

oy

3.4.4 - Sign Flag
_

‘Bit three is the signflag and is refered to by the single letter"N" (for Negative). It is set whenever the most significant bit of the ©result. is a one bit. For arithmetic operations, this flag is set if avalid negative two’s complement result is obtained. Note that two’s
complement branches use both the N and V flags so that the the proper ~branch path is taken even if a two’s complement overflow has occured.

Bit four is the IRQmaskbit and is refered to by the single letter"I", the processor will not recognize IRQ interrupts if this flag isset. The interrupt ‘acknowledgesequence sets the IRQ mask flag toinhibit subsequent
‘routine completes o

from interrupt instruc:
flag from the stack.

terrupt requests until the interrupt service —

:

344.6 - Half—CarryFlag

explicitly clears the interrupt mask. Areturn
on will restore the state of the interrupt mask

_ Bitfive is the half-carry flag and ie refered to by the singleletter "H". This flag is used after eight bit add operations to
indicate the carry out of bit threein the arithmetic unit. This flag-is.used by the DAAinstructions to perform packed decimal (BCD)additionadjustment. In. general, the half carry flag state is undefined after
non=add operations and addtype instructionson sixteenbit operands.We
364.7 = PIRQInterrupt Mask

Bit six is the FIRQinterruptmask bit and 4s refered to by the‘single letter "F". This flag affects the FIRQ interrupt in the samemanner that the I flag affects the IRQ interrupt. Remember
interrupts do not stack the entire machine state. eo hee

3.4.8 = Entire StateFlag

|

Bit sevenis the EntireState flagand is referedto by the single
letter "E". It is used onlyby the returnfrominterrupt instruction to |determine how muchof the machine state was pushedonto the system atack

hat FIRQ

at the time of an interrupt. Two saved states are defined: the entire —state (E= 1) in which all registers have been pushed ontothe systemstack, and the subset state (E = 0) in which only the program counterand the condition flags have been pushed onto the stack. In general,the state of the E flag is indeterminate except after an interrupt.

= 343 -

Assembler Users. Guide

3.5 ~ Direct Page Register Los :

:

|

ORS

|

The Direct Page Register is an eight bit register that is used to

| provide the most significant eight bits of the sixteen bit address
generated by instructions using direct addressing. It is refered to as

the "DP" register and is initialized to. zero at RESETtime... eh

366 = AddressingModes
One. of the most useful featuresof the 6809 adicropedesanse:is its

wide variety of addressing modes. The use of these. addressing modes
permits the 6809 to be: programmed either as a zero address (stack)
machine, or as a one address (accumulator) machine « In addition to

memory addressing modee,- several. implicit addressing modes reference
internal processor registers and status indicators. Four instructions
have been provided that explicitly perform stack operations

—

that
reference memory through the two stack pointerregisters.

306.1 — Inherent addressing
Inherent addressing includesthose instructionswhich haveno- user

specifiable addressing options. All data references are implicitwithin
the instruction itself. :

ee

:

Example:. MUL
-

Multiply.Aceumulators-
:

SWI2 >.
-.

Do User Software Interrupt|

3-6.2 - Accumulator Addressing

Accumulator addressing refers to data values contained within the
accumulator registers and does not generate a memory reference cycle.
Most instructions perform operations on the eight bit A or 8B

accumulators, while some instructions also. perform operations ‘on the
sixteen bit D accumulator. The accumulator apecification is Sormaltyappended to the mnemonic rootspecification.

:

Example: CLRA oe -. Clear A kéounulator
NEGB ~

Negate B Accumulator

Register addressing refers to data values contained within one of —

the MPU data or pointer registers. The selected register or registers.
must be explicitly specified as instruction operands. A register list
consists of a series of register specifications, . separated =by . commas.
Some instructions having register addressing implicitly. ‘Feferstice:memorythrough the two stack pointer registers.

—

|

3.663 ~ Register Addressing

|

Example: TFRs, MoveData from D to IX”
PSHS. A,B,X Push Registers on Stack -

= Fah a

i

way, an instruction wtilizi:

-

Assembler Users Guide

3+6.4 >=

Condition:FlagAddressing
Conditionflag. addressingrefers ‘to specific.flag bits in: the

condition — flag register. This form of ©addressing is used for the
condition code operations. A condition flag list consists of a series
of conditionflagspecificattons,separated by commas.

“Example: BWAILF Wait for IRQor FIRQ
sec. Ws Set the Overflow Flag —

366. 5 ~ -MenoryAddressingNodes:
Memory_ addressingnodesare used to specifyoperacions: on operanda

residing in main memory.: Several memory addressing modes are available.
Immediate addressing— accesses an operand that is contained within the

_

instruction itself. ‘Absolute:addressing requires an operand whose exact
“memory. address. is known at assembly time. Indexed addressing accesses.

an operand at an address that is developed from the contents of one of
the MPU pointer registers: and thus is the most flexible of the

—

addressingmodes+ a
: ene

3-666 = ImmediateAddressing
“Immediateaddressingrefers to. a data“valuethat 4e “containedwithin the. “byte or bytes immediatelyfollowing the instruction opcode.

This mode ig used to access a value that is known at assembly time and —
:

|

Branple:: ie mn
* So SS|

CMPD «#ADDRESS-—=—sSee1f D = ADDRESS

3 67 “ Absolute‘Addressing
“ eoluee.addressingreferstoa data valuethat is referenced

1

by:teas ay

“addres:word or byte immediately following the instruction —opcode.es
‘There dre. two program selectable modes of absolute. addressing: Direct
and Extended.(Bothof thesemodesare necengartlyposition,Aepentlents

‘Direct ‘badveaetaguses the eight bit “tomedtatevalue.of the —

instruction as the low order eight bits of an address. The high order
eight bits are obtained from the direct page register (DPR). In this

direct. addressing can reference one of 256 _
locations in a "page" of memory selected by the direct page registers-

Extended addressing.-usea the sixteen bit immediate value of the
instruction as. the. address” of the data value and can access data

ee

anywhere in memory,

which will not be. changed during program eéxecution. ImmediatePs

addressing is specifiedbyPrefixing—
the operand| expressionwith egcrosshatch, "#".

o
.

In order to ‘specify| absoluteaddtessing,‘apectty‘theaddressof.ke”
the specified. address

.

and compares the high order portion with the
_ assumed contents of the direct page register (specified via the SETDP ES

directive) in order:to.
_ determineabsolutepaddresetagmode.af ‘the

data as the operand field of the instruction. The assembler . computes
—

- Assembler Users Guide

‘programmerwishes to explicitly specify direct or extended | addressing,two significance forcing characters are provided. The less-than sign"<" forces the assembler to create an eight bit addréss. while thegreater-than sign ">" forcea a sixteen bit address. In the case of an
eight bit address, a warning is issued if the assembler determines that
eight bits is insufficient...

Example: LDB BYTE __ Load a Byte
: TST _<LOWBYTE

—Ss_ Test a Byte - Direct
CLR >HIBYTE Clear a Byte - Extended

3-648 ~ Relative Addressing

Relative addressing is used for branch address calculations and
refers to an address that is computed from the updated programcountervalue and the byte or word of offset contained within the instruction.Short relative addressing uses an eight bit offset and provides relative |addresses of -128 to +127 bytes. Long. relative addressing uses asixteen bit offset and can address anywhere in memory.

_

The assembler normally computes the offset required and assignes |either long or short relative addressing as appropriate. If theprogrammer wishes to explicitly assign short or long. relativeaddressing, the two significance forcing characters may be used similar -

to absolute addressingabove. A warningmessage is produced if short
. addressing is selected and an eight bit offset is insufficient.

Example: BRA LABEL Relative Addressing
‘BNE <SHORT Short Relative Addressing
BEQ >LONG Long Relative Addressing

—

 3+669 = Indexed Addressing

“Indexedaddressingrefers to data values whoseaddress is developed.from the value contained in one of the MPUpointer registers. The
-

_ Specific register used to develop the address of the actual data (calledthe effective address) is called the index base register. ~The register_to be used for a base address must always be explicitly. specified.Certain indexing ihodes have the ability to use the program counter _Tegister as their index base register. .

: Indexedaddressingrequires the presence of an indexingmodepostbyte following the instruction opcode. This post byte Specifies both
. the ‘type of- indexed addressing to be used and which index base register

_ to use. If an offset or address is required by the indexing mode,‘this
.

Value follows. the post byte in the immediate data field. Several
options are available to conserve both execution time and object code —“Spaces The assembler automatically selects the instruction formatthat- will require minimun object code space and time.

- 366-

at

used to select eight or sixteen bit offsets respectively.

366411=ConstantOffsetIndirect Indexing

_

address from memory.
in square brackets
‘the expression and b

(366012~ AccumulatorOffsetIndexing

accumulator register to the value of an index: baseregister to generate
- an effective address. If indirection is specified, this address is then

used to fetch the effective addressvalue from memory. In the case of
the A or B accumulators theoffset is a signed eight: bit value. For the.

offsetsare selected by specifing the accumulatorregister as the
operand followed by the index base register specification. Like

operandinsideof équare brackets.

Emample: «STABLY.=——=—s=~=«é«A AcCmULatOOFFect

address is thenused to fetch the effective address valuefrom memory.

incremented by one or two. Note that the increment mustbe two if

‘AssemblerUsersGuide

3.6.10 = Constant Offset Indexing
|

Constantoffset indexed addressinggenerates an effective address __ a

- by adding a fixed offset to the contents of one of the four MPUpointer
-registers. The offset is contained within the instruction itself and 9

_ follows the indexing mode post byte. Offsets are signed values, and maybe five, eight, or sixteen bits in length. The assembler computes the
offset and selects the smallest adequate format. The base register isSpecified followingthe offset expression. If an explicit offset sizeis desired, the significance forcing charactera "<" and ">" " may be

Example: «LDA s«125X. - Constant Offset from X —

oSBRA a
- Constant Offset from Y

- LDX <0,0U- Forced 8-bit Offset
 STX >12,8 _ Forced 16-bit Offset

Like most of the indexedaddressingmodes,constantoffset indexing _
may specifya single level of indirection. The effective address is oe
generated byadding the fixed offset to the value of the index base.
register, and then using that address to fetch a sixteen bit effective

—Indirection is specified “by enclosing the operand _
Any significance forcingcharactersmustprecede—nside of the brackets.

 Ewample: IMP_=——s[0,X)_—==—S—S—sGonatantOffset tadirect
ee EDD [12,0]

: Forced 16-bit Offeet

Accumulatoroffset indexed addressing adds the contentsof an.

D accumulator, the offset is a signed sixteen bit value. Accumulator

constantoffset indexing,indirectionis specifiedby placingthe

LOX DU bat AccumulatorOffset 8
CMPB [A,X]. Ssbit OffsetIndirect — ae

AutoincrementIndexing

Autoincrementindexed addressinguses the value of an index base
register as the effectiveaddress. If indirection is specified, this
After the effective address is determined, the base register is

~ er

Assembler Users Guide r

indirection . is specified. No
. offset is permitted when using

autoincrement addressing. Autoincrement is selected by following the
base register specification by either one or two plus signs "+", for
increments of. one. or. two respectively. Like other forms of addressing,
indirection is specifiedby enclosing the operandin squarebrackets.

| Exemple:- LDA 0, Rt os & AutoTactementBR:One
STD 0,¥++ .~—- AutoIncrement by Two |

Lou [0, S++) - AutoIncrement Indirect

3.6.14 ~ Autodecrement Indexing

Autodecrement indexed addressing‘gubtracts eitherone or - two from
an index base register and subsequently uses that value as the effective
address. If indirection is specified, this. address is then used to
fetch the effective address value from memory. Note that the decrement
value must be two if: indirection is specified. No offset is permitted —

with autodecrement. indexing. | Autodecrement addressing is selected by
preceding the base register specificationby either one or two minus
signs "=", for decrements of one or two respectively. Like. ‘other. forms
of indexed

"

addressing, iedivectionis speci itedby enclosingthe operand
in square brackets.

Example: CLR es
|

. Autotecrementby One.
2 LDY Ome

_ .AutoDecrement by Two

STY [05-8] AutoDecrementIndirect
.

306615. =

|

Extended AbsoluteIndirectAddressing
Extendedabsoluteindirect addressidguses the address word

contained in the instruction to fetch an effective address from memory.
This addressing mode allows the programmer to define a pseudo register
vector. (in IBM terminology) for use. in communicatingbetween program
modules. Since the instruction contains an absolute address,it is

necessarily position dependents: :

Example: BITA. _ (DEVICE)Extended AbsoluteIndirect
3.6.16 “ ProgramCounterRelativeMdressing

Programcounter addressinguses the value of the ‘updatedpropia:
counter register as the index base value. A fixed offset contained

- within the instruction is added to the updated program counter value — to

obtain the effective address, Tf indirection is specified, “this address
is then used to fetch the effective address. from memory. The expression
value specified in the eource code is the desired value of the effective —
address; the assembler uses that value to compute the required offset. .
Program counter relative addressing is specified ‘by affixing the "Pc".
register specification to the requested address. Like other forms of

—

.indexing, indirection 4s specified by enclosing the operand in square
—

brackets.-

Example: LDA BYTE,PC -—S=ProgramCounter Relative
:

STX _ {ADDR,PC] Program Counter Indirect

= 348 -

coumter reference

|

Aad1._ Symbolicerences

reference,a op

AssemblerUsersGuide

4.0 - Assembler Expteseions
Expressions “consist. of one or more terms combined with assembler

operators. Each term represents a sixteen bit signed value, and the.
result of —expression

—

evaluation is also sixteen bits and_ signed. The
expression value.“may be absolute, : relocatable, or complex relocatable,
depending on the relocation attributes of the various terms and the

operators used upon.them. In addition to’ the relocation attributes, the
expres@ion may have the starred attribute. This attribute will be set

Lf any of the terms in the expression have the star attribute. More
information on starred. sapresaionscan oe found in the chapter on

assembler directives.eee .

:

‘Under certain. ‘eiveuaatences“exptessione:may.be precededor
‘surroundedby. special characters used to- specify addressing modes. It
must be clearly understood that these mode characters are not part of

the expressionpropry and hence must not
‘appearwithin an expression.

hel -Termsin Expressions
Termsin expressions.may consist of symbolic:references,location

,

numeric constants, character constants, or truth
value constants. Symbolic references

~

have an explicit relocation
attribute set when the ‘symbol is defined. Location counter references.
have the relocation attributes of the eurrent program counters =

=

Constants‘alwayshavea relocationattributeofabsolute.

“Symbolicre erences.“may ‘consist of “a lost: geference:a global
_ reference, or a structure reference. Local

references consi yf an identifier with no qualifier characters (".")
and refer to the most local definition of that identifier. Global
references consist of the global, qualifier character (". "y followed by
an identifier and ©refer to that identifier defined in. the ‘global.
dictionary. ‘Parental references consist of the parental © qualifier
character ("“") followed by an identifier and refer to that identifierdefined in the. ‘pa ent dictionary of the current. procedure.‘Structure.refetences, which may be local, global, or. parental, consist of me

identifiers ‘separatedby. global qualifier characters.Someexamples of
“syabotte referencesare: Cee

8

: eee ee a somLocal -tetetence_
wee ee ee = + = a global reference

_

see ee ee ee ee = a parental reference
tet ttt eee = - a local structure

Se ae

- 7777 8 global structure
: Rodi

-—---—“ @ parental structure ~

PAGE.PARAGRAPHPERASE.WORD.LEPTER-~-— a local structure oo

= be]

Assembler Users Guide

4.02 - Location Counter References

Location-counter references consist of the asterisk "k" used inplace of a symbolic reference. The value and relocation attributes of a
location counter reference are those of the current program counter atthe beginning of primary statementprocessing for the current | line. of
assembler source input. Note that this value does not change within a
line of source code, regardless of changes in program counter values.For example, in the following statements, both location counterreferences have the same value (which is the value of the ‘identifier
“LABEL"):

|

ORG $0200
oeLABEL CLR 0,X+; DECB; BPL *; DECA; BPL #;

4.1.3 ~ Numeric Constants

Numeric type constants consist of an optional radix designatorcharacter, followed by a string of digits. If the radix is greater than
ten, the larger digits are specified as letters, with the letter "A"
having a value of ten, "B" for eleven, and so forth. Each digit ischecked to be sure that its value is less than that of the designatedradix. Por the purposes of numeric constant evaluation, the assembler
treats letters of lower case and upper case as identical.

Permissible redix designator characters. are "$" denotinghexidecimal numbers, ©"z" denoting binary numbers, and "@", denotingoctal numbers. In the absence of a radix designator, decimal numbers
are assumed. Numeric type constants always have a relocation attributeof absolute. Examples of numeric constants are as follows:

Decimal Constant ~- 21845
Hexidecimal Constant -<~ $5555.
Binary Constant _s= %101010101010101
Octal Constant ae @52525

4.1.4 = Character Constants
|

Character type constants consist of an opening quote. characterfollowed by a string of characters followed by the closing quotecharacter. This assembler recognises three characters as quotecharacters: the double quote """, the single quote (apostrophe) "’",and the grave accent "et Any of these characters may be used to. begina character constant, however, . the closing quote must be the same
character as the opening quote. Character constants are limited to a
precision of 16 bits or two characters, and always have a relocation |

attribute of absolute. Examples of character constants are:
ae

~~ Character constant with value $0000"at ~- Character constant with value $0041“AB ~~ Character constantwith value $4142‘ABC’ -=— Character constant with value $4243 -

oN

‘AssemblerUsersGuide

Quotes within character constants may be denoted by using two
successive quote characters, or by using a different quote character as

_

a delimiter. In either case, there must always be a proper character as
a closing quote. Some examples of character constants containing quotes

mi"

== Characterconstant with value $0027.
o> Gharacter constant with value $0027.

~- Character constant with value $2727.
~~. Character constant with value $2727 _

ee

eb

Ree ee

. - Tf the Motorola compatability option has been selected, character —constants consist of an opening single quote character followed by
exactlyone ASCII character. In this case, the upper nine bits of the
character constant value are zero, and the lower seven bits have the
ASCII value of the following character. No closing. quotes arepermitted. Someexamples of Motorola compatable character constants are:

tA “- Characterconstantwith value $0041os
~ Character constant with value $0020.

~- Character constant with value $0027_
pe

4.1.5= Truth Constante_

Truth value constants consist of the reserved symbols TRUE and
—

FALSE and have values of 1 and 0 respectively. The relocation attribute _

of truth value constants is always absolute. In expressions, truthvalue operators. treat any
©

non=zero value as being equivalent to the
truth value TRUE.

8

99. ee
ee

eee

-

4.2 = Operatorsin AssemblerExpressions
fhe assembler upports a wide variety of operators in expressions.These operators are usedto evaluate expressions at assembly time, and —in addition, several operators can be passed to the linker program to —

cause expression evaluation at link time. In either case, operators are
processed in precedence order. That is, operators with a higherprecedence value are processed before operators with a lower value. Acomplete listing of operators and precedence values can be found in -—

table 4.1. In the following example, the value of VAR2 is multiplied bythe value of VAR3,and the result ie added to VARI:

_-VARIAVAR2@VAR3multiplyhas higherprecedencethan add
_ Each term of the source expression is evaluated to a signed,

_ sixteen bit binary relocatable value during expression scanning. These
_ binary values are then passed to the expression evaluator to perform the ©

required arithmetic. Note that expression evaluation always produces a

‘Sixteen bit result even if terms in the expression. are undefined.Undefined terms have a value of zero and a relocation attribute of =
absolute. eS oe cones OE eS

oe ea Ss

~ 4-3 =

Assembler Users Guide

4.3 = Grouping Operators

The two parenthesesand are used as grouping operators are used to
alter the order of expression evaluation by explicitly stating the order
in which expressions ate to be processed. These operators have a

precedence value of 12; higher than that of any other operator.
Parentheses maybe nested up to ten levels deep. The following exampledemonstrates the use of parentheses: By

0007, El «=RQU.s14243. sO GROUPED
0006. £2 EQU (14273 | GROUPED

4.4 = Arithmetic Operators

Seven arithmetic. operators are provided. The unary negation
operator, "=", returns as its result the two’s complement of its
operand. If an overflow occurs as a result of the negation, the maximum
negative sixteen bit number is returned as the result. The unary plus
operator, "+", is essentially a no-op. ‘The binary addition operator,
"+", and the binary subtraction operator, "-", perform sixteen bit two’s
complement arithmetic. _Anyoverflow that. mayoccur produces a warning
message but is otherwise ignored. The multiplication operator, "*",
performs a sixteen bit signed multiply. If the results of the
multiplication have more than sixteen bits of significance, a warning
message is produced and the result is then truncated to sixteen bits.
The division operator, "/", performs a sixteen bit signed division withthe sign of the result determined by the rules of algebra. AnyTemainder is discarded. Note that a divide by zero produces a warning
and substitutes the maximum possible sixteen bit number for the result.The modulus operator, "2", performs a signed division and returns the |remainder as the result. The sign of the remainder is always the same
as the sign of the dividend. If a divide by zero occurs, the result is
set to zero. A few examples will illustrate the use of the seven
arithmetic operators:

: oe :

:

0003 = El EU 43
ee UNARYPLUS-

_FFF8 - £2 Eq. ~7
|

UNARYMINUS
OOOF- . E3 EQU 5410 ADDITION
FFF6 -E4 EQU 5-10 - -

SUBTRACTION
0032 ES EQqU 5¥10— MULTIPLICATION0005 £6 EQ 100/17 DIVISION
OOO0F E7 EQU 100%]7 =~MODULUS

4.5 = Truth Value Operators

The two unary truth value operatora are used to convert arithmetic
(possibly relocatable) values into truth values. The truth valueoperator "/" has the value TRUE 1f its argument ie non-zero, and FALSE1f its argument is zero. ‘Thetruth value negation operator "!" performs
the truth value conversion in the same manner,and then invertstheresul te

,

= hunt “

*,

a

“AssemblerUsers Guide
‘The value TRUE is equal to one, with a relocationattribute of

absolute. Similarly, FALSE.is equal to zero, also absolute. ‘These oevalues may be used. in arithmetic
expressions.Examples of the truth |

value. operatoraene~~

9001umaEw fz “TRUEVALUE=

0000 a EQ 112—
” FALSE VALUE

de6 - RelationalOperators
“The six ftuery,relationaloperators are. used to comparetheir leftand fight operands. If the. relational condition is satisfied, the value |

of the expression is TRUE,otherwise it is FALSE. These operators. are
particularly useful. in conditional assembly and for use with the ERRIF.

directive. ‘Examplesof the six ‘Yelationaloperatoteare: :

0020 wT QU 32
colo Lo E16
0000 «RI ‘EQU HI<LO ‘LessTHANa.

00002 -R2 equ “HI<@Lo LESS THAN OR EQUALTO
0000 «R30 EQU. HTasi | EQUALTO.
0001 ==R4 EU - -ATL=LO NOT EQUALTO

. 0001 RS = EQU.SsHI@>L0 GREATERTHAN.OREQUALTO"
0001 Bigs EQU | HI>LO GREATERTHAN

In order.to eimplitythe codingof relational“operators;severalvariations on basic ‘syntax are recognised as valid. The Less Than or
Equal To operator m. “be specified as "<=" or also as "ac", the Greater
Than. or Equal To operator as "=>" and also as ">=", the Not Equal To.Operator as "I=". "es", and also as "><". The ‘€onctionof these
compositeoperatorsis exactlythe eaaesonly.theirsyntax:is different.
407~ BitwiseLogicalOperators:

“Fourbitwise logical ‘operatedare “provideds ‘The unary ‘Noroperator teett produces.as its result the one’s complement of ita’ operand.The three binary operators
|

‘are the Inclusive oR operator "|", theExclusive OR operato 2 He
perform their ‘respectiveo:

OFor M1 Ew SOror
OOFF = M2 Ew SOOFF
FOFO Vi gQU. Hla wor
OFFF v2 EQU M1IM2 BINARYINCLUSTVEoR
OFFO V3 EQU MI“M2 —s-BINARYEXCLUSIVEOR

 O00OF==ovy Ban
-

MI&M2 BINARYAND

= G5

and the ANDopérator, "&". These operatorsperatonsbitwise upon their two operands.The

Followingexamples.will clarifytheirfunctions: es
ee

Assembler Users Guide

4.8 ~ Shift Operators OS

All of the six. shift operators are binary with the left operand
specifying the value to be shifted and the right operand specifying the
bit count. The shift count is signed, meaning that a left shift with a

negative bit count is converted into a right shift and so forth. No
checks are made for. arithmetic

—

overflow or lost significance. The

following diagrams illustrate the six different shifts: :

‘CoO >> RightLogicalShit
b15

COECECECETTees << LettLilgicarSrv
b15 — be

+> Right Arithmetic Shift

CUOCCITICIT TI <0 <+ LeftArithmeticshift
b18 — be .

aR %> RightRowt ADb15

‘doce <% —LeftRotate
b15 — ey

Logical shifts supply zero bits for all | positions vacated.
Arithmetic shifts sign extend the value being shifted. Rotates use the
bits shifted out of the value to fill the vacated bit positions:“™efollowing examples. illustrate the shift operators:

FOFO Ml EQ $FoFO

7878 =6Vl- BQU Mi>>l LOGICAL RIGHT SHIFT
C30 V2. EQU) Mi<<2. LOGICALLEFT SHIFT
FEIE V3 EQU Mi+>3. ARITHMETICRIGHTSHIFT

a

OFO00 v4 EQU Mi<+4. ARITHMETICLEFTSHIFT OSES _
8787, V5 EQU MI%>5 RIGHT ROTATE

noe ae

3C3 VG6—CEQUSsM<%60—-—~—s«s:~=C*«CSEET’.:ROTATE,

Assembler Users Guideee

he Qe Logicalconnectives_

- “Logicalconnectivesare binary operators used to join truth valued
_ expressions into complex truth values. Two connectives are available, —

Logical AND, "&&", and TopicaloR, "J". Someexamples of the use of2 connectivesaret: oe ;

:

0010 «vl kW 16
. 6020 = v2 _ EQU320

0020. V3 BQU Vici | |

0000 LX RU. VimeV266V2=eV3“LOGICALAND
0001 «=«LY=EQU.«-Vie=v2||V2==V3 LOGICALOR

Assembler

Operator

—_

wm

bb

aN

Pk

<+

<2
>>

+>

a>

=F

+ Bdtwise AND

Users Guide

~ Table 4.1 ~

Assembler Operator Precedence

~Fanection

“ ‘Left Parenthesis ..

~ Right Parenthesis .

- Unary Plus... . .

- Unary Negation... .
~ Unary Bitwise Not.
~ Unary Truth Value .
~ Unary Negated‘TruthValue

~ ArithmeticAddition

~ Arithmetic Multiplication~- Arithmetic Division

-. Left Logical Shift .
~ Left Arithmetic Shift
- Left Rotate ew ee
~ Right Logical ‘Shift:

*

¢

*

*.

*

e

.

2

eo6 &

~ Arithmetic Subtraction o 6

*

~ Right Arithmetic Shift
-

RightRotate .. ee * *

*

ee

8

.

@

- RelationalLess Than 8

-

Relational Less Than or EqualTo

(Same)
~ Relational Equal To

(Same)
- RelationalGreater Than

~ Arithmetic Modulus (Remainder

cy

e

.

e

*

s

©

©

©

@

8

«6

oe

@

&

&

«©

eo

 —
&@

&

we

ow

‘

* * * * * ¢
~ Relational Greater Than or Equal

- Relational Not Equal To.
(Same)

(Sane)
* e * e

~ Bitwise Exclusive OR
- Bitwise Inclusive oR

- Logical Connective AND
~ Logical ConnectiveOR.

~ 48 «

te

* 5

e

*

s ¢ #

*.

*

e

*

to

*

*

.

*

2

*

*

e

e

e

*

*

¢@

*

e

&

©

@

@

«

ee

woe

ee

* «

To

e

©

@©

e&

«6

oe

ee
le

*

ca

e

°

s

«

*

*

»

*

«

ee

@¢

8

@

ES

ae

*

*

*

*

*

°

*

e

2.

e

*

©

&©

@€

#

e

ss

©.

A

*

*

+

*

e

°

«

*

se

ct

e

Precedence —

ee w 12

eee 12

. ee TT

* e a Tl

* 8 6 ll

wee ll
ee « HY

e * * 9

owe 9

«6 6 16
» + 10
e * = 10

wee 8B
aes 8
@ ¢ 8
oe 8
. e ° 8
. s * 8

oe @ € 7
2 ° * 7

oe 6 -6
* e cd 7

ee * 7

see 6

eee S§
s * e 4
Ss ee 3

wee 2
© ee 1

IN

 gssembler Users Guide

5.0 = 6809 OperationMnemonics
-

The following ‘pagescontaina detaileddescriptionof. the 6809
operations supported by the SWTPC assembler. These operations consist —
of 6809 primitives and _a few extended mnemonics designed to simplify —

structured programming practices. Each table entry consists of the —assembler mnemonic, a description of the function of each of the
operations, a list of affected condition flags,and. the valid

addressing...modesfor. that operarions-

: Sel- ConditionFlags
The ‘conditionflag liet ‘contains.informationabout whichcondition |

flags an. operation. alters and the criteria for the result. Unless -

otherwise . specifically ‘mentioned, the Interrupt Mask (IRQ) and Fast. >.
-. Interrupt Mask (FIRQ) are unchanged by the operation. The Entire State .

flag (E) is undefined in the condition flag register and is valid on the ©

stack only after an ‘interrupt .—The slow maskable interrupt (IRQ), the —
fon-maskable

|

interrupt (NMI), and all three of the software interrupts _

(SWI) set the Entire State flag before pushing the MPU registers on the —
--@tack. Only the fast maskable interrupt (FIRQ) clears the entire state

flag and then pastes:omythe conditionflags and the programcounter on.

thestack. :

5.2— ExtendedMaemonics
"Severalof | the supportedmnemonicsare.noe:strictly‘speaking 6809

operations, and consist of ‘either multiple 6809 instructions or of ©
‘syntax different from the

|

Motorola standard. ‘These instructions are

marked with the notation "ext" after the assembler mnemonic. They have.
been provided for the sake of program clarity and coding convenience. . :

All extended mnemonicswill. “produce error. messagesif the Motorola’
-

compatabilityoption has. ‘beenget.

eas - 6800YantlyWoenonics
Full support hasbeen providedfor 6800 amilyimemonicoperation

_ codes (except of course the. 6805). In certain cases, these operations ©
will assemble into ~multiple instruction sequences: designed to emulate —

- the specified 6800 operations. ‘Emulation is exact in all cases except.
for the 6801 MULinstruction which is upward compatable. The 6809 MUL

- operation sets the ‘Zero ‘flag,whenappropriate while the 6801
operation

—

/ does note :

:

:

on Seb =

Assembler Users Guide

ABX

DESCRIPTION:

CONDITION CODES:

ADDRESSING MODES:

ADC

DESCRIPTION:

CONDITION CODES:

ADDRESSINGMODES:

ADD

DESCRIPTION:

CONDITION CODES:

ADDRESSING-MODES:

Add ACCBInto IX

Add the eight. bit wsigned value in the 8B
accumulator into the X index register. ‘This.

instruction is provided for 6801 compatibility.
Not Affected.

Inherent -

Add withCarry
Adds. the ‘earryflag and the memorybyteinto an
eightbit register.

H: Set if the operationcauses a carry frombit
three in the ALU.

N: Set 4f the bit seven of the result is Set.
3 Set ££ all bits of the result are Clear.

Vi Set if the operation causes a two’s
| complementarithmetic overflow.

C: Set if the operation causes a carry from the highorder bit in the ALU.
Inmediate,Direct,‘Indexed, Exténded

Add Without Carry
Adds memory into register.
H: For eight bit operations, set 4 the oberation

causes. a carry from bit three in the ALU. For
sixteen bit operations, the H flag is unaffected.

‘WN: Set if the high order bit of the result is Set.
Z: Set if all bits of the result are Clears.
V: Set if the operation causes a two’s “complenentarithmetic overflow.
C: Set if the operation causes a carryfrom‘thehigh

order bit. in the ALU.
oS

Immediate, Direct, Indexed,Extended

=~ Sad

AND

DESCRIPTION:

CONDITIONCODES:

CONDITIONCODES: Thecondition codesare set to. the result of theaoe _ 8=bit logicalAND of the currentcondition code bits
with the immediate operand. “Any condition code bit

-.. dmeluding the interrupt masks may be cleared by this
operation... en ee

ADDRESSINGMODES: Immediate _

Logical AND

Hs NotAffected. ee
Nt Set if bit seven of the result if Set. -@t Set 4f all bits of the result are Clear.

ADDRESSINGMODES:Immediate,Direct, Indexed,Extended

oe “LogicalANDInto ConditionCode Register
DESCRIPTION

Boe eondition
code register and the immediate byte and

.

AssemblerUsers Guide_ oe

Performaan eight bit logical ANDoperation between _ ees‘thecontents of a register and the contents of
ne

“Not Affected.

Performsan eight bit logical ANDbetween the

places the result in the condition coderegister.

a Bag

Assembler Users Guide

ASL

DESCRIPTION:

CONDITION CODES:

ADDRESSING MODES:

ASR .

DESCRIPTION:

CONDITION CODES:

ADDRESSINGMODES:

Arithmetic Shift Left
oo

Shifts all bits of the operand one place to the
left.-Bit zero is loaded with a-ozero. The high
order bit of the operand is shifted into the earryflag. .

Ht Undefined.= |

es

+ Set if the high order bit of the result 1s Set.
2: Set if all bits of the result ‘are Clear.
Vi Set if the bit shifted out of the high order bit

is not. equal to the bit shifted into the high
order bit.

C: Loaded with the high order bit of the original
operand.

Accumulator , Direct,Indexed,Extended

Arithmetic Shift Right

Shifts all bits of the operandore lee right and
sets the carry flag from bit zero of the original
operand. Thehigh order. bit is held constant to
provide. ‘Propertwo*s complement sign extension.

CO)
H: Undefined. =.

N: Set if the sign bit of the result is Set.
Z: Set 1f all bits of result are Clear.Vi Not Affected.
C: Loadedwith bit zero of the original operand.
Accumulator,Direct, Indexed, Extended

—

(= 5a4 =

_

CONDITIONcopEs:—

DESCRIPTION:ue

os

ADDRESSINGMoves:

DESCRIPTION:

| CONDITIONcopes:a
| ADDRESSINGMODES:

"AssemblerUsers Guide
BCC

es

4
ve ‘Branchon Carry Clear

|

DESCRIPTION:_ Mentethe state of the Carrybit andcausesa branch
ae

tf Carry is clear.

CONDITIONCODES:NotAffected.
:

ADDRESSINGMODES:Relative,LongRelativea ee

BesBranch on CarrySet
DESCRIPTION:—=>Testet the state of theCaerybitandcauses,abranchEEE Shad

at Carryis Bt. fo

Net‘Affected:

ADDRESSINGMODES:Relative,LongRelative

BEQ se : _—-Branehon Equal

Weedafter a ‘subtractor “compareoperation,—thie
heResery operand.”

CONDONcopzs:Not Affected.oe

tive,LongRelative
BGE ee Branchon

1

Greateror Equal
Usedafter a auberaetor. compare.operationon(signed.binary values, this. Anstrucion will branch if the |egister was(Sreaterthanor._eqaal to he Memoryoperind« : oe ches

ee
oe

Notstfected.
Miactehytong,Relative.o 2 _ S

instruction will branchif the.Pestacer,is equalto
:

Assembler Users Guide oe :

ve

BGT

DESCRIPTION:

CONDITIONCODE:

ADDRESSINGMODES:

BHI

DESCRIPTION:

CONDITION CODES:

ADDRESSING MODES:

BHS

DESCRIPTION:

CONDITIONCODES:

ADDRESSING MODES:

BIT

DESCRIPTION:

CONDITIONCopES:

- ADDRESSING MODES:

Branchon Greater

Used after a subtract or compare operation on signed _

binary values, ‘this instruction will branch if the

register was greater than the memoryoperand
«

Not Affected.
Relative, LongRelative

Branch if Higher—
Usedafter. a subtract. or compare operation on

unsigned binary values this instrucion will branch

if the register was higher than the memory operand. _

Relative, LongRelative

Branch if Higheror Same -

When- ‘weed.‘after 2a subtract or compare on unsigned
binary. values,
register was higher than or same ae the memory

—

operand. .

Not Affected.

Relative, LongRelative

Bit Test

“Performsan eight‘pit logicalANDof the contents of e
a register and a qemory operand and modifies —
condition codes:accordingly. The contents of the

registerare hot affected. a

H: NotAffected.mee
N: Set if bit geven of the result ‘te Sets.
Z: Set if all bits of the result are ear.Ws Cleared. .

:

C: Not Affected..

Immediate,Direct;‘Indexed,fxtended

546 =

this instruction will branch if

ae Set eengS ES

BLE

DESCRIPTION:

CONDITIONCODES:

BLO

DESCRIPTION:

CONDITIONCODES:|

ADDRESSINGMODES:

BLS _

"DESCRIPTION:

binary values, —

Fegisterwas lower than the memory operand.

S Relative,Long.Relative

Branchon Lower or Samece
ees

: ‘Usedafter a wabtrace.‘de.goupure
unsignedbinary values, this. instruciton will branch

‘Assembler UsersGuide

Branch|on Lessor Equal

‘Usedafter a subtract or compare ‘operationon signed
binary values, this instruction will branch if the

‘

register was less | than. or. equal to., the memory
operand. -

4 :

Not‘Affected.

|

Relative,LongRelative

“Branchon Lower
Whenused after a pubteact:or compareon unsigned

this instruction will branch if the.
: NorAffected-

48 the register was lower thanor ‘the(sameas ‘the
CONDITIONCODES:_

_

ADDRESSINGMODES:—“Balacive,LongRelative

"DESCRIPTION:

eeADDRESSINGMODES:Relative,TongRelativeae

a menoryoperand.me

pales BranchonLess

ee Tegister:was less whanthe memoryoperand&
‘CONDITIONcoves:- NotAffected.SS

Not‘Affected.

“uedafter a subtractor compareoperatio on
1

signed
binary values, this. instruction will branch Af _the

Assembler Users Guide

BMI

DESCRIPTION:

CONDITION CODES:

ADDRESSINGMODES:

BNE

DESCRIPTION:

CONDITION CODES:

ADDRESSINGMODES:

BPL

DESCRIPTION:

CONDITION CODES:

ADDRESSING MODES:

BRA

‘DESCRIPTION:

CONDITION CODES:

_ ADDRESSINGMODES:

BRN

DESCRIPTION:

CONDITIONCODES:

ADDRESSINGMODES:

Branch on Minus

Used after an operation on signed binary values,this instruciton will branch if the result is

negative.
Not Affected.

.

Relative, Long Relative
|

Branch Not Equal

Used after a subtract or compareoperation,thisinstruction will branch if the register is not equalto the memory operand.

Not Affected.
:

Relative, Long Relative

Branch on Plus

Used after an operation signedbinaryvalues, this _instruction will branch tf the result is positive.

Not Affected.

Relative, Long Relative

Branch

Causes an unconditional branch.

Not Affécted.—
ti}

Relative, Long Relative

Branch Never

Does not cause a branch. This instruction is_ essentially a NO-oP. :

Not Affected.

Relative, Long Relative

~ 3-8 -

BSR

‘DESCRIPTION:

as ‘CONDITIONcoves:
cS ADDRESSINGMODES:

BV”

: ‘DESCRIPTION:

CONDITIONCODES:

ADDRESSINGMODES:Relative, LongRelative

BS

DESCRIPTION:
=

AssemblerUsersGuide

Branch to Subroutine

The updated program counter
system stack and control As.
effective address. :

‘Not Affected.
- Relative, LongRelative

Branchon Overflow Clear —

.

teste the state of the overflowflag andcausesa
s

:
branch if the over flow flag is sets m

NotAffected.

‘BranchonOverflowSet

Tests the state oFthe overflowflag and causes |a
branchif the overflow flagis clear.

"CONDITIONCODES:

Eze

ae ‘DESCRIPTION:
-

- conprrtoncoves::
aeADDRESSINGMODES:

|

DESCRIPTION:

_ CONDITIONCODES:—

ADDRESSINGMODES:

Branchon Zero Clear

NotAffected.

Relative,Tong:RelativeRee

- Tests| the state of: the
|

zero.
)

flagand_causes|a
|

branch
af the zero ‘flag is clear~

Artected.oe

“Relative,LongRelative

BranchonZero‘Set
|

‘Teststhe.state of the zero elasandcauses a‘branchoff the.zero flag is sete oe
Not.Affected.eo

Relative,hongRelativeoo

Oe page

is puted. onto the|
.

transferred to. the —

Assembler Users Guide

cee (ext)
DESCRIPTION:©

-

CONDITIONCODES:

ADDRESSINGMODES:

CLR

DESCRIPTION:

CONDITIONCODES:

-

ADDRESSING MODES:

CMP

» DESCRIPTION:

- CONDITIONCODES:

ADDRESSINGMODES:

Clear Condition Code

Explicitly. clears any subset of the MPU condition
flags. This operation is an extended syntax versionof ANDEC.
All condition flags specified as operands are
cleared. It is not possible to specify the Entire
State flag. ;

ConditionList

Clear.

The register or memoryis loadedwith zero. The

carryflag is: clearedfor 6800compatibility.
H: Not Affected.
N: Cleared
Z: Set.
Vi Cleared
Cy Cleared
Accumulator, Detect; Indexed,‘Extended

CompareMenorytoa. Sapteced
Comparesa memory
specified regi
codes.

r and: sets appropriatecondition ©

Hs Uadefined eight bit Specertons,aaa.”
unaffected for 16<bit operations. .

N: Set if the high order bit of the result is Set.
Z: Set 1£ all bits of the result are Clear. oe
V: Set if the operettoncauses a two"s

) complement
.

overflows
C: Set if the subtraction dia not cause a carry from see

the mostsignificantbit of the ALU.
lamadiate,Direct,Indexed, Extended

~ 5a19 <

‘operand| to the contents of a.

DESCRIPTION:-

QCONDITIONCODES:

: ADDRESSINGMODES:

—CWAI
DESCRIPTION:

-

_ CONDITIONcopes:

"ADDRESSINGMoDES:I

DESCRIPTION:
=

ADDRESSINGMODES:

‘theCWALinetruction ANDsan immediatebyte. withthe

systemstack, and then waits for an interrupt. When

interrupt:h

AssemblerUsers Guide_
-

Complement:
Replacesthe contentsof a register or

¢

memorywith:
its one’s”complement. The carry flag is set for -

a 6800‘Compatibility.
:

fi: ‘NotAffected.
WN: Set 1f bit seven of the:réanlt:is ‘Set

oe Set if all bits. of the result:are Clear

Accumulator,Direct, Indexed, Extended _

ClearandWaitfor. Interrupt
ition. code register (which may clear interrupt _
),. stacks the entire machine state on the

—

on-masked interrupt occurs, no further machine_
e8 will be. saved before. vectoring| to the

ng routine. .

onditioncodes.are set. to”‘the.“pasultof the
bit logical AND of the current condition code

fer stn operandsAny|condition—cod

:"Shouldbe. ‘used Taicer an ‘ADDor pos
wichthe resultheldin he A

Bee
iatee,

8 “aebit sevenof eebuttta dete” ve

‘Setif all bits of the Teeake are(Clear.

Assembler Users Guide

DEC

DESCRIPTION:

CONDITION CODES:

ADDRESSINGMODES:

EOR

DESCRIPTION:

CONDITIONCODES:

ADDRESSINGMODES:

EWA (ext)

DESCRIPTION:

‘CONDITION CODES:

ADDRESSINGMODES:

All condition flags

Decrement

Subtract one from the operand. The carry flag.te
not affected, thus allowing DEC to be a loop-counterin multipleprecisioncomputations.
He Not.‘Affected. .

:

N: Set if bit seven of result is Set.
Z: Set 1£ all bits of result are Clear.
Vi Set if a two’s complementarithmeticoverflow

occurs.
C: Not Affected.

AccumulatorDirect, Indexed, Extended

“ExclusiveOR

A memoryoperandis exclusiveORedinto an eightbit
register.

H: Not Affected.
N: Set if bit seven of result is Set
Z: Set 1f all bits of result are Clear
V: Cleared.
C: Not.Affected.

Immediate, Direct, Extended, Indexed—

EnableInterrupts and Wait

Explicitlyclears aay subset of the MPU condition
flags, stacks the contents of the MPUregisters on _
the system stack, and waits for an interrupt. This
operation is an extended syntax version of OATS

(including“interruptmasks)
specified as operands are cleated. It is not

possible‘to specify the Entire State flag.

ConditionList

_ DESCRIPTION: Exchange two

-—

coNDrTroNcoves:NotAffected.
-—

ADpeaSsINEMODES:RegisterZ

DESCRIPTION:the Exit instructionloadsthe eysteestack ‘potter eeoes from the user stack pointer, and then pulls the _

-

CONDITIONCODES: NotAffected.
|

"ADDRESSINGMODES:RegisterList

S DESCRIPTION:

“CONDITIONcope:

ADDRESSINGMODES:Accumulator,Direct,Indexed,Extended

OMB es dump
ae DESCRIPTION:Beas | ‘eontrolis transferredto

0 theeeffective
CONDITIONCODES: NotAffected.
ADDRESSINGMopgs:Direct,Indexed,Extended

. AssemblerUsersGuide
EXE ExchangeRegisters

register
\

values:‘Note‘that‘eebintecsmay only be exchanged with registers of like Size,dees, eight bit with

ean bie, or sixteenbit with.
:

| Sixteenbit. a

oe

ex (ext) Rete,fromProcedure“

 ptevious user stack pointer, the specified
-. ¥egisters, and ‘the program counter (which effects:a_ Feturnfromsub roubine):foe the system stack, ae

_ nerenent
. Thecarry ‘flagtethus allowing INC to be used 4

oop-comterin MultiplePrecisioncomputations.
Set if bit seven of t e result is ‘Set.
Set if all bits of the FYesult are Clear. — seVs Set if. a two”s SempenettarithmeticoverflowOsoe

occurs. oe ly
o

address.

=5-13-

AssemblerUsers Guide

JSR

DESCRIPTION:

CONDITION CODES:

ADDRESSING MODES:

LD

DESCRIPTION:

CONDITION CODES:

_ ADDRESSINGMODES:

LEA

DESCRIPTION

CONDITIONCODES:

ADDRESSINGMODES:—

_

LoadEffective Address

. flag as a parameter to a- calling routine,
6800 INS/DES. compatibility.

AG ee
Jump to Subroutine .

eos fades

The updated—progtan counter is pushedonto the
system stack and control is transferred to the
effective address.

Not Affected.

Direct, Indexed, Extended
_

LoadRegisterfromMemory
Load ‘the contents of the addressed memory. into the
“register

Hs ‘Not.Affected.
Ns. Set. 4f bit seven of Loaded.data is Set

Z: Set if all bits of loaded data are Clear

V: Cleared.

C: Not Affected.

Immediate,Direct, Indexed, Extended

FSO

Form the effectiveaddressto
,

date using the memory
addressingmodes Load that. address, not the data

itself into the pointer register:
“Ueaxand‘LEAYfFect the Zero flag to allow use as-

 egounters and
=

for 6800.INX/DEXcompatibility. =
and LEAS do. not affect the Zero flag to allow for |

“LEAU

cleaning up to the stack while returning the Zero |
and. . for

Al other conditionflags:are unaffected.
Indexed

“=Se14 -

ee AssemblerUsersGuide

ee SR "Logical‘Shift Left

DESCRIPTION:
——=s Shifts all bits of the-‘operand.one placeto. the

Oe re Left. Bit zero is loaded with a&zeros Bit seven is —
ae dnto the carryflags

. » ee ee

CONDITIONCODES:_ “Undefined. TUB

ns
ee : Set if bit seven of the esult

1

ie Set. ee

‘3‘Set if all bits of the resultare Clear. ;

Set if the carry out of. the high order bit ‘te
Tai llavea than the carry into the high: order bite |

a8:Loadedwith bit seven of he.originalOpera
ADDRESSINGMODES:Accumilator,Direct, Indexed,Extendedoo

UR logical‘ShiftRight
ift on theoperand.forms a logical righ

iif - operanc
Ae

jer bit and bit zeroShifts a zero into the hig

into the EAEeyflags -

DESCRIPTION:

-

ADDRESSINGMODES:- see Direct, Indexed,‘Extended

~ 5-15=)

Assembler Users Guide

MARK(ext)

DESCRIPTION:

CONDITIONCODES:

ADDRESSING MODES:

MUL

DESCRIPTION:

CONDITION CODES:

_

ADDRESSINGMoDES:

REC

DESCRIPTION:

CONDITIONCODES:

ADDRESSINGMoDES:

Mark System Stack

The Mark instruction pushes the specified registerlist and the user stack pointer onto the systemStack, and then loads the user stack pointer from ©the system stack pointer. eS

Not Affected.
RegisterList

Multiply Aceumulators
Multiply the unsigned binary numbers in the Aand B
accumulators and place the result in the dD.accumulator.

H: Not Affected.
ON: Not Affected.

Vi: Not Affected. —
.

Z: Set if all bits of the result are Clear.
|

ee

C: Set if bit seven of the B accumulator is Set. _
Inherent _

Negate

operand with its two’s complement+Note that 80 (Hex)is replaced by iteeif and only inthis case is overflow sét. The value 00 (Hex) is
—

also replaced by itself, and only in this case is ©carty cleared.
| Uo eS

Replaces the

H: Undefined sy.

oaks
N: Set 1f bit seven of result is Sets.
Z: Set 1£ all bits of result are Clear.
V: Set if the original operand was 80 (Hex). oeC: Cleared if the original operandwas 00 (Hex).

Accumulator,Direct, Indexed, Extended

- 516 =

OF

CONDITIONCODES:
_ ADDRESSINGMODES:—

|

DESCRIPTION:

_ CONDITIONcoDES:—

ADDRESSINGMODES:mediate

“Teherent

“InclusiveOR

and the result is stored.dn the register. aS

‘NiSet 1f£ high order bit. of resultSet BAe

Z: Set if all bits of result are ‘Clear
Ve Cleared
ooNot Affected.

Immediate,Direct,IndexedExtended

InclusiveORinto woud eis coderegister,

‘register. This instructionmaybe used to set
 SREAEUREmasks. ;

oe

= eight bit logical OR of the current condition code

bits with he immediate operand. .Any condition . code

bit including the interruptmaskscanbe.set
t

by ee
operation. oes

AsseublerUsersGuide

No
>

Operation
This is a singlebyte instructionthat causes: the
program counter to be incremented. No... other

registersor memory contents are. affected.

NotAffected.

Performsan eight bit inclusiveOR

f

Spetation‘between
the contents of a register and. the memory —operand.

HeHoeAffected.

an eight bit. inclusive.ORoperationbeteean:
and the.result is placed. in the condition code

The conditioncodes are. get to the:peselt. of the

= 5-17 =

. Assembler Users Guide

PSHS.

DESCRIPTION:

CONDITIONCODES:

ADDRESSINGMODES:

PSHU

DESCRIPTION:

CONDITIONCODES:

ADDRESSIGMODE:

PULS

DESCRIPTION:

_ CONDITIONcopes:

ADDRESSINGMODES:

POLU

DESCRIPTION:

CONDITIONCODES:

oe
_ ADDRESSINGMODES:

Stack.

Push Registerson the System Stack

Any subset of the MPU registers except the system
stack pointer itself are pushed. onto the system
stack.

Not Affected.

Register List

Push Registers:on the User Stack
Any subset of the MPU registers except the userstack pointer itself are pushed onto the user stack.
Not Affected. —

RegisterList
_

Pull Registersfrom SystemStack =
=

Anysubsetof the MPUregisters exceptthe systemstack pointer itself are pulled from the system

Unaffectedunless the conditioncoderegisteris
-

pulled from the system stack. —

/ Pull Registersfromthe User ‘Stack
eet of the MPU registers exceptthe user

stack pointer itself are pulledfrom the user stack.

‘Unaffected unless the conditioncoderegister is- pulled from the user stack,

RegisterList

a 5u18 =

7

ed RET. (ext)

“DaseazeTion:

CONDITION
f

CODES:
Anos MODES:

AssemblerUsers Guide

“Return‘Registers
The return inatrudtionpulls.the apectfiedpeslacey
148t and the program counter (which effects a retars
fromsubroutine)from the systemetack~—

. Not Affected.

MeptoterList.

‘RotateLeft

ate all bits of ‘the paced‘one.place.left
rough the carry flag. —This18 a ‘Sinesbir,whiteoy operation.

codedv with bit sevenoftheoriginaloperand
:

unalator,Direct, Indexed,1‘Betended

- 5-19 -

AssemblerUsers Guide

ROR |

_DESCRIPTION:|

CONDITIONCODES:

ADDRESSINGMODES:

RTI

DESCRIPTION:

CONDITIONCODES:
_

ADDRESSINGMODES:

RTS

‘DESCRIPTION:

CONDITIONCoDEs:

“ADDRESSINGMODES:

Rotate Right

Rotates all. bite of the operand right | one. place .through the
carry flag. Thies is a nine-bit‘Shite:operation. :

He RotAffected.:
N: Set if bit seven of teauieis Set.
Z: Set if all bits of result are. Clear. AV: Not ‘Affected. :

Cr
Loadedwith‘bit sero of the originalopetend«

Accumulator,Direct,Indexed
, Extended

Returnfrom Interrupt
The. saved iaschiaestate is técoveredfrouthe svsten.astack and control is returned to. the ©Hapervepend

a

“program.

RecoveredfromStack
Inherent

Return.fromSubroutine
Programconttol is returned from thesubroutinete eo

the calling program. The return addressie
a pitiedfrom the. system stack.

Not Affected.

Inherent

ae

DESCRIPTION:| — Repttctetysete anysubsetof theMPOeeeittonSRE Elo
ee

Thi:

- CONDTTYOWcopEs:|

; AssemblerUsersGuide S a

SBC ‘Subatractwith torrow
.

DESCRIPTION:oh Subtractsthe contents of memory ard. the borrow flag”0m the contents of a

‘Fegister,— andPlaces.the
| Fesultin that

Fegister
CONDITIONCODES: HM:‘Undefined.

Nr Set if bit seven of the resslt is ‘Set.
a Bb Set Af all bits of the result: are Clear. -

- uM ®et if the operationcausesa two" 8 complenent0 overflow.

BeSet if the operationtd notcausea carry fromae

Bae‘pevenin the ALU.:

tate,Direct;Indexed,Tetended

sce (ext)o 3 set ConditionCodes
:

oemee
2 conditionflagscs a0Speviends- are ‘get.
ds not pousibieto spactty|the BatireState flag.

ae ‘{netructiontrans: ms a ‘signed binary
tabit value in the B accwhulator tuto a signed

ixteen-bitvalue in theafem
the“highdetest ot the.‘feacit,is Set.
all bits of the eesteate

y

Clear« &

- S21

'

Assembler Users Guide

ST

| DESCRIPTION:
|

- CONDITIONCODES:—

ADDRESSING‘MODES:

SUB

DESCRIPTION::

CONDITIONCODES:

ADDRESSINGMODES:
8 tens

‘SWI

DESCRIPTION:

CONDITION’CODES:

ADDRESSINGMODES:

DESCRIPTION:

CONDITIONCODES:

Store.RegisterIntoMemory

Direct,Indexed,‘etended

€: Bet if the ‘operationdid not Gause;a carryfrom ae

stack and coritrol is transtetradies" the SHI.Nebr
ea

oe oe Ue

Th mq add rie maskbakeare
“fla

“unaffected.

Inherent

Writesthe contents of an MPUregisterintoa menorya

location.
a

HeNotAffected. So

N: Set if bit: seven. of stored Gata:was Set.
Be ‘Setaf all bits of stored data are Clear.
os ¢

.

j

.

Co t Affected.a

SubtractMemory fromRegisteree =

- pebteeetathe valuein memory‘fromthe contentsof a

‘Fegister. :

Hi Uhdefinea.oe
“HN:Set if the high orderbit ofthe result is ‘set.

Z:. Set if all bits of the result are Clear.
“Vi Set_if the operation causes a _two’5. ‘complement

ce

‘ovetflow. |

‘thehighonderbit in the ALU.

fate,Direct,Indexed,‘Betended
:

f the
os

Si Cantarare pushe | otto’the systenoe

et oe condition
Fegister.

SoftwareInterrepe
1

2
All. of the‘MPUfrégiscers‘arepala onto.the. wat
stack. and control ois transfertedSeen the mevector. :

oe = ce :
2

Not.Affected.

ote

DESCRIPTION:

AssemblerUsersGuide
_ ADDRESSINGMODES:_ Inherent

SWI3 i. SoftwareInterrupt3

DESCRIPTION:=a of the MPUpegiataxa.are pushedonto the yates ge
 @tack and control is transferredthecal¢theSTSca wee re Me

ee

e conpr108‘CODES:“Woe:Affected.
ADDRESSINGMoves:teherent

|

SYNC Synchronizeto External| Event ee
oe

oe

DESCRIPTION:Whena SYNCinstructionis executed,the MPUenters s
 S¥WCing state, stops. Processing instrucitons, and- wWedteson an interrupt. When an interrupt occurs,

the SYNCing© state is clestetand
—

processing- dontinues.Tf the interrupt _ enabled, the |
ieee

 precessor will perform the toratragtroutine. Té 0)
the interrupt is masked, the. recente simply
continuesto fhe next

+ fantrection. ee

CONDITIONcones: toeAffected.

te sfer
t

Repioterto Register
: ta of like size; ie», eight bit Boa Betseixt en bit to sixteenete ane

2 Not Affected
.

Si

Register

4 Source
— ‘pentecerto. a. dee ination, Registers may only by transferredbetween

o

Assembler Users Guide

TST

~ DESCRIPTION:

CONDITION CODES: 6S
En

a. Nb Set Lf bit seven of the fesult.is Mets
2: Set if all bits of the result are Glear+Vt Cleared.

Ct Not Affected.o:

"ADDRESSING

MODES:—

The TST instruction conceptually adds an immediate

Test the magnitude of an eight bit operand. —

value of zero to the operand and seta the condition.
codes” accordingly. No data is written to memory BEL
data registers.
Hs ‘Not.Affected.ae

Accumulator,Direct,Indexedj ‘Extended:

Assembler Users Cuide

6.3.1 - The Star Attribute _
. The equate directive may be used to define a symbol having the star

attribute. This flag is used by the FCB directive to determine whether.
one or two bytes of data need be generated. The star flag is selectedby preceding the equate operand with a crosshatch character, "#". Thestar flag is also selected if any symbolic reference in the operand —expression has its star flag set. An example of the use of. the star-flag follows: kee

. oe ne

OD0A CR -EQU. #S0D0A Set Star Flag
0200 ORE $200

.

.

0200 4D 53 47 MSG FCB "MSG" | Message Text
0203 OD0A 00. FCB CR,O End of Text

6-4 = ERR-- Generate an Error
The ERR” directive ig used to generate an assembler error fordocumentation purposes. When the ERR directive. is: encountered, theassembler will generate error number 65, Programmer Signaled Error.

This directive may be used to call attention to certain areas of source
code, or may be used in conditional assembly in order to detect certain
exceptional conditions. For compatability purposes, the mnemonic "FAIL"

—

is also recognised for this operation. on

SP a os

. 665 ~ ERRIF =~ Generate a ConditionalError

truth-valued expression. If the expression value is true, an errormessage is generated as in the ERR directive, otherwise the ERRIF
—

directive is ignored. Note that the unary truth value operators "?" and"/" may be used to convertan arithmeticexpression intoa truthvalue.

The ERRIF directive requiresan operand, which it expectsto be a

Some Examples of the ERRIFdirective follow:

C702
_ ERRIF45<12 FalseCondition=C702. _ ERRIF #=>§C700 TooMuch Memory Used***% ERROR *** 065~ Programmer Signalled Error Sy es

6-6 ~ FAIL —

Generate an Error
_ The FAIL directive has been provided for compa

- Motorola assemblers and is identical to the ERR directive. tebilitywith
6.7 = FCB =~ Form Constant Bytes

The FCB directive is used to define areas of data at a-and may have one or more operands, separated by commas.
may be either a character string or an assembler expressioimportant to realize that character strings (such as udirective) ard character constants are not equivalent.

-

constants have a maximom precision of sixteen bits (two.
while character strings may be of any length.

racters)

~ §=2. =

ee oe Guide

.

If an operandbegins.with one of the
fe considered to be a character string constant. . The data. generatedeoneists of ’‘the ASCII characters enclosed by the quotes. If a quote isto be enclosed within the character string itself, ite presence must beindicated by two successive quote characters. | For example, the. stringa JOHN’*S”. consists of six characters, and could also be defined by using1 alternate syntax "JOHN’S". If character constants ate required as

are:of ax expression,| they must. not be the | firet. term in the .ee

810:
oe

* the unary plus | operator gan be. weed to forceexpressionevalustion,
s Pevenienetan exampleof this techniqueis givenlater.

If the operanddoes “not begin with a quote chacaeted,an expressionand is evaluated to a sixteen bit
plate permitted and have the value zero. The

Double bytesignificancemaybe forced by using the significance forcing |Character, ">" as the first character of the expression and in thiscase, two ‘bytesof data will be generated. —This featureis _BeefuhFor._ etibeddingadtrecssoresinsideof Sonstants+ =
:

Tf an. express “Herectivehae, the eterae :

sion the: expresaiexvalue {s used to determines whetheroneox ‘twoyes of ta.will be generated. If the value of the

ab os“or or equal to ~128 and less than +528, then _
ated. For all other values (ineludingof data are generated.

ough the use of the forcing character 'te'
re

“Severalexeaples|of
|

ale Fesaapective
ae fim!‘Beta

‘Stat Flag Set

 teyte tytes
‘Character‘String ©

Quote in String

assenblerquote charactersit

or the entire expression can be enclosedi
ae

at ie

ally generates one byte of data for each chpeaseiog.

Note that the star

+ Termsbi

os gee bitsSeagate
eee

characters.—

(tate 16)CB Character Eepretsion}

aN" "Character Expression _
_ >500_ Forced Significance7$B 500 One ‘Byte. less

ae

saat, 13 two jOeetends“18,,,15 Null Operands
oo|

CR, ET hee flag Deed
«CR a ForcedBignificanceSS

te Soipaebilityoption1s specified,either ‘on thede

or through the opr directive,

‘ee Of ekestate of the “star flag or the
|

forcing

character. string
eginning with a quote character. are

‘S$ and dre used in expression -daition,the significance of | each operand is forced to_

'

Assembler Users Cuide

6.68 -

FCC <~ Form ConstantCharacters
The FCC. directive is used to ‘definecharacteretringsin.memory.

: The character string starts with the first non-separator character after -
the FCC opcode, and terminates with the ‘second occurrance of that

OE the FCC directive follows: :

is permitted, and it must have a valid disk file name format.inclusion files may be nested, and upto ninety-sine: library:

ae library file
sant, an extentionof ‘Txtis, assumed« A

character. These delimiters may be any printable ASCII character, . and |are not considered as part of the character string.soneexamplesof

QOOF4142 4344 FCC/ABCD/SlasDelimiter
0013. 65 66 67 68 Ftc “efgh" QuoteDelimiter

6.9 - FDB -~

FormDoubleByte
: The. FBdirectiveis”used: to define 16-bit. wordsin acmorys- te ‘may

have one or more operands, &éparated by commas, and will define. sone word
for each operand expression.This directive is normally used to defineaddresses. ooh oes

6-10 - FMB~~ FormMultipleBytes
The . FMB directiveis” used to. reserve areas of. memoryahd to.

initalize them to a single8-bit value. The first operand of the FMB.
directive defines the length of the tiemory atea to be defined While the.

-

second operand definee the byte of data to be stored in the memoty area

_ The second operand is optional, and if omitted, 1s aasumed to be fero.
If the BSZ directive is used, it is. ‘processed, exactly like | . the FMB
directive and since no second operandis specified, the wemnoryarea is

:

properly initialized to zeroes. The first operand of FMB (and of BSZ)
must not contain any forwardor external -beterencens:Somesapieneethe FMB directive follow! -

:

PORE Re

:

0019 00 00 00 0000. FMB 5 FiveBytes ooOO1E OA OA OA ENB3, 10 | Three‘Bytesoe

Gell ~ LIB ~~ libraryInclusion

The LIB directiveie ‘aged — to fineludeade a as_ source language input to the assembler. In effect, the Inelidedsource_ :

_file replaces the library directive in the assembly. Only. one

files —fay yee_

be included in one as@embly. If
- no extenaten:is meri ae

:

6809 17 ozoD 91. BY BSR _MOVE
92.0

93. LIBS ‘suBS
101%
2.01... SUBROUTINES

7069 A6 80 = 4.01. MOVE LDA 0,%+
706B A7 AO 5.01 STA 0, Y+

= 6-4 <

6612 er ae ModuleName_
The 2 NAMwy been “provided”‘for source |

ae Seeatebaittywith ola pri assemblers.he

- mechanism used to define:

origin. If a label 1a spe
as the name of the progre
the ABSOLUTEprogram coun‘

must not contain forwar
© Statementsfollow:

- Statement, the PAG directive is ignored and appears in the listing.

pagination is in effer

~ procedure’ statement ‘has:
- the procedure dictionar

‘“@ictionary mamed. “*

oo dictionaries are searched.

Assembler Users Guide

- 6 14 ~ ORG ~~ Set Program Counter
-

Origin

‘The assembler supportamultipleprogram countersections, each of.
which may be absolute or. relocatable. The ORG directive is the.

@

program counter section, and to set its

ified or the ORG statement, this label 1s used
ounter section. If no label is specified

ts selected. The operandof this ofcestiyeexternal references.Sonsexamples— of

2 $0200 Resolute PC”0200 =

$0400 _ BUF‘ProgranCounter“0400

615 - PAG —

-

Start‘a Nes Page
.

The page directive &used.to force the deeondler’to the bop °

a of listing. If the “pageoption has not been selected, either by

specifying the “Pp” option-on the assembler commandline or via the OPT

‘the PAGdirective itself.disappearsfrom.t
Programlisting. :

oe

6616- PROC — Begina Procure Block
teweedto begina procetureblock.“Tethe
bel, then that label is used as the name of
jtéd. If the dictionary has already. been

‘ive is. considered to be a continuation. of t
jure. atatémentwith no label creates

re *onnn” is a. four-digitnumberused

ee The proteduredir

defined, then this dis
~

previous definiion. A pr

make the dictionary name

"the symbol tableuniess
Zs Symbols.definedin

- eannot be referenced —
declared as entry defin:

label
—

terminator:

al to the block. ufiless: they are explicitl:
yyusing: ‘the colon character ":" ae
is appear in the dictionary that contast
ae to the peeceerrs

pidg Tt
ire be a weedwithaccutane.directives, the:‘prog:

ia oe) should| take . piacea
to

"proced
e pr wed DY.

the current’
t

pecouatedictionary (ealled the ‘localdictionary). 1
reference has not been resdlved, the parent dictionsery is searched, |
then its parent, ard. €0. on, until the globaldictionary hag. bee
searched. If the referencehas ati ‘not been resolved,then the.ves

_AssenblerUsersCut
The abilityto declare entry. pointsand to have locallabelsis.

of

great aseistance in writing modular, block structured
Parameterization can be well defined and controlled by) prohibit
serese.to

_

subroutine
aries. An example shown.She. use 0

tes follows:

| COMPAREBYTEPELRowen
ENTERWITHX => SOURCEFIELD.

woe Y *> TARGETFIELD
Bos PTLD‘LENGTH

PROC Declare ShinyPoint|
LDA 0,X+- Get Source Byte.
CMPA 0,Y+

=

—s CompareTo Target
BNE FAIL sd: Not Equal, Exit.

DECB Decrement Count—
ves BNE° cup ‘LoopTH11. Done

+ FAIL RTS
a

— ExitTouring
"cme"and‘alsocauses the spibey“opr to

_ Theprocedureis terminated

qui ‘thesedictionates are not Printedunlessthe ot opt: :

current local ‘at soabeyandthenpioteads“thresh
dictionaryuntil the global dictionary ha

localdictionary up throug

- andonlythen:ate the

Assembler Users Guide

The order in multiple 4 public. dictionaries are searched is not —

defined. More precisely, public dictionaries are not in general searched
in the same order in which public directives appear in the input stream.

.. Tf duplicate labels appear in one or more public dictionaries, which one

will. be used to. ‘finally. résolve the reference is unpredictable,An

exampleof. the use of a publicdictionary is shown:— s

a =

PUBLIC
, Start Library||

aCD03ee 29. WARMSEQU $cD03 Warm Start Addr
|

CD24 30. PORLF EQU $CD24 Do CLE
|

:

86. END
;

|

0209 BDcD 24 9 JSR. PCRLF- Do Line Feed
020C 7E CD 03 92. ; IMPWARMS “Back to BOS -

Oe 18 ~

-

QUAL.~~ Begin a ‘QualifiedData‘Block

The QUALdirective is used to. ‘start an internal qualifieddata
dictionary. The directive must have a label field which te used as the -

.

name of the qualified dictionary. Symbols defined inside of a qualified
data structure must be referenced by using the name of the symbol
qualified by the structure name. An example of a wealteiad| structure
and its references is. shown:

G69 B603 55 52, LDA. RECORD.SEXGetSexValue
Cr6C 8146 53... MPA yn See if Available

* «.

ee, BR ‘RECORD‘QUAL :

Start

A

8§
0355 83. MAME RMB «1002=~*«<“‘:é‘«éRField

035F =i (“we SEX =RMB dE
(tst*t*é«C «Oe.

86. END

os RMBSadReserveMenoryBytes
‘The RMBdirective ie used to teserve a plock ae‘memory- byt

os

initialization is performed on the reserved memory.
sf

must fet contain any forward or external references, and specifies the ae

length of the block of memoryto be reserved. Since no object code is

generated, RMBdirectives do not require anyspace in the ae code -

oTAlae‘SomeSpamplee
oF, aes follow:

9100 =-—“‘«~*‘i*é‘«SRB is
_0200we ey BUF RMB ~ 10000 Large ‘Buffer —

6.20 - ‘Sere- — Set Direct PagePaeudo Register |

“TheSETDPdirective ‘is used to inform the assembler.0} “presumed
contents of the direct. page register. This value is by. the
assembler to decide whether direct or extended absol: ddreseing© oO
should be generated. The most significant eight bits of the expression|
field is ‘usedfor addressingcalculations. The express:

~

southis. _Fegserer

ee AsseublerUsersGuide_
oe

have the relocationattributeof absolute. In addition, it

= coe
ee

: containforwardor externalreferences-
SES

a Tt is. Ampottant.‘to.tealize that. the SETDP_directive‘in ‘noa
: affecta |

the: acttal contents of the direct page register. It. te the
“programmer”8 reaponsibility to insure that the proper values are loaded.

a

cecution time. ‘The directive affects only the : eS
ts 8decision‘process,An ele of the use. OF

ome “teertacd,Ad
LDAACTA>>8_Lead Addr‘MSP S

TFR A,DPR LoadDirect Pageoe

SETDPACIA tellAssenbler
. WAIT LDA ACTA Get Status

ESRA. ——i‘titst:*:*é«Seckheceiver:
BOC WAIT = soo if RothingLDA| ACTA+L OREData ayte.

compatability‘optionhas ‘beenset (eitheron.—
2

OPT directive), the SETDP directive uses the
feast sight ts orthe valueto set the direct.pagepects| as
register.

_Beeretet:
6621= BPC

Vege

St the
“ “asewabletLis

generated. —

- the number of

it specifies

perand ‘8 : tne

is‘pecitied,and 48 eae. it
|

eatina oe
4

i

the operand is” re

622 = TT
te used‘toshits a tk or

able:

not been selected eithe by apecifying~
miand line or via the OPT directive,

é eption

is active, the
» @ new page of

 Ldeting. 11
the

the "P™ option
on

— the TTL direc
- primeingof the |

thetnew pagehead

example,-@ pure code. procedure references a static

Assembler Users Guide

fe?023
“

USE
~ UseProgramCounterSection

“the:USEdirectivecauses the assembler to selec a new program.counter section: “No label nay be specified on a use tatement, and the _operand ‘field musteither be a single asterisk, '#"
» Or the name of a.- program counter section. If a name is specified, t

counter —section ig made the previous program counternamed. section then becomes: the currently active progr:asterisk is specified, the previous program counter seccurrently | active - section... If there is no previoMessage is Produced‘and the ‘ARSOLUTEprogramcounter£

on is made the
ection, an error

selected.—

icallyconnected
In the following

8 area. The two

ae ie different menory locations.

current program
tion, and the ee

counter..- Tf an

- Sections are kept distinct in memory by using multiple program counters. _Notice that the _teferences‘to the data. section ai. utilize
+ direceaddressing. S

2 es

2

a, a
Bea Pack a Word

String“a 36 °
4

241A he TBE cope
241A 8E 00. 2 Se PACK Lyx. ‘OoRD
241D IF 120 6 CtCSTR XY

(-241F D6 200 op LEN.2421 OF20 8 t—=<—s«<SRL
2423 A680 = GRAM:_«LDA OO,X+
24252704 10. BEQ LOOP2427 AT AO 1. STA OO,2o29 OC 2 INCL(2428 SA 13. OOP ECR
242-26 FS

Ah BRE CRAM
te 9s.

Ooze USE DATA
002c RMB ik

. 002. RMB. 32
2628 USE

- 6-10 -

MAINalongwith its value, 0000,

-

~—symbo?-EDMK in ‘the ‘global=:

| PUBLICDICTIONARY“Poeer"
: NO PARENT

po

©-++|- SYMBOL“MOVE”O10" pee4

Poddel” PROGRAM.COUNTER“ABSOLUTE”wn
| a eee LOS esiE“SYMBOLPATTERN25

:

co SYMBOL“SAMPLE”06 Sqe -) : —
- }TROCEOUREDICTIONARY“EDR”at _SOLTRI 8

|

4:
oe

_Sras0tSrerwe | Mo og

Thesample|programshovere Tut ieNeSubiootine*EOMR"thet isutedto.convertPsfrom BCD decimal numbe: (packed decimal). to display format, completewithinsertion of commas, dollar si decimal points, and whatever. This.
progresEG- illustratesseveral of ‘thecapabilitiesof ‘theSHTPCassembler.ee ne

Theabel SAMPLEat a definesan.ordinarysymboland appears.in the“deeclenaty
0 A small subroutine MOVEhas been included, and“placed in the public dictionary via the PUBLICstatement at "B". ‘The label MOVEee.referenced | a | ordinary symbol found in the dictionary foes

es‘WAIN.*PD0001.he Su
vent

end tatement at “D" terminates the public cuedictionary. . The
"

subvautie EDMKis includedvia the LIBstatement at meneThe
|

PROC statement at "F" defines a focedure dictionary named ‘MAIN.EOMKand ajonary. The symbol definition represents anexplicit are as dendted by the coton on the label. Labels within the.EUMK

are loca

0 «6the:«procedureand appear only in dictionarya

, Som ca] labels are DIGITand NEXTshown at "G". Oneadditional »“interesting s

the local variable UL FLAGthat is created on._ the stack by subroutine E this.variable is.referencedavea eerie.offset”fromthe user stack pointer,as ‘shownat "HS
mht

Me

2.

OE

Se
ladda

“awors
1s00
my

LIKZO18
1800

“

“gO1SLas.
¥Z00
oe

IORERAN
1900

axa

9900
DIC
MOT

2900
|

_.

 HAQMET
To00,
=

Wd
sa

yo00",
==

MHOTITa
0000

—

aie
one
-

-aaHDOLA
£200

a.

_

Beiora
£4000

=
Mid
ape

zoo0

TT
2S00

eS

PVI

1101

UaNO"

oO
Sora

MALOVEVEO
‘TITd

SONS
NWALLVE
ONINIVIGE

pee:
ee
rg

NE
EG

OES
As

eg
ee

EE
eae

~

 MINTOd
ONTELS
€Om

Oe

San

ee

ts
reampeooaa

—

Te,

PES,
San

EE
@

MAINIOd
LIOIG
91S

Iswla

|

othe

‘BAOH
GI00

:

|

 ygyag
SHE

OINI

SLESAd0
SV

SETEVIEVA.’

San

Be ee

:

ee

2

.

:

woe

Toes
a

4

ON
:

°

Q

Ht
Pe

oe

[yy
2

o

a

S

oe,

arora

INVOLAINDIS
Isuta
ee

ee

oe

a

-

SS

oe

NINLSCod

WALA.
<=)

a‘ats
~

avax
sece

A'd-
GnML

1000s
ONTus
O00.

=

SS

TOO

2

GEOR

eA

SS
a

ES

ee

Ow.
-

ae

WHYS
0000

-

id

€900-(
NUMLIVd
$700

A*d‘S
—

HLNOW
ZETE

OL

Co

Bk

Re
ee

-qxouvEoND
=

fifa
-

asiva
090002:

Md-

EHD

aC
—

asi

sss

TO

a

ee

‘nta‘S-
AVC
SETE
=

ss

REGO
GE00
Od

-

BLN

TIOSEY
0000
dd
-

1000dde

-

onTEs
wELLVE
<>

:

2

on

Seah

gg

ess

ars

aS

-ONINLS
Ga
<=|

‘aIONa

SMELLY
aoe
Tus

-

NNELEVE
¥

“a0

TOXLNOD
aan

qIDsv
o1

“gunqao0wNIVH
go
GNZ

=

Was

«GMR

tt(

eg

SLs
a

Ba

-auranouans
Be
tes

ee

eee
2

RE
BOON

a

OCU

Se

ee
z18

‘E08

“ez8‘00

OS

Ge

og

oS

{Nata
@ION
OL

ONTELS

 6E

1800

EVE
40

HINT,

cs

a

-

SE
Ee

Eas
ae

gr

“LISI@

INVOLEINOIS
ISWla
LAS

a*ald
sa
A

OVid

ZONVOIAINOISUS

ONT

as

ye.

ee
ee

OR

es

oe

oes

“aS

AGVAWIV
OVId

aT

UK“
LIKHOIS
ANE

20°

oe
oO

ee

OO

gq*sa*
‘sat,

|

DVL

AORVOTALNDIS
HOME

ash

“BIsias
70°69

gS

E00

IE

RE

su

.

-

gsaudav
LIO1G

INVOLATNOTS:
isu

anv

ZONVOLATNOIS
ws

*

20°49

PLS

A

Co

ae

wouoamas
Urotg

8

Seas

2099

ae

oe

oe

Do

i
oe

‘

1

001
Ox,

sa

LUG

SE
Bee

ote
he

ae

woes,

EOD
OR

RE

ON

ge
we

pee
PPP
a

=
*

iio1a
rosy
sev

aud

 yOutt
3

06
V8

LZ00

ae

@

CE

SESS

_

MQNVOTAINDIS
LID10
WOmHO

asISlas

9

£0

ag.

S100

che

UF

Tes

co

-

gantay
xem

SSVakG
‘LIOIG
OWNZ
AT

=

UVRDDIG.
“on

waHDOIG
720°

ZO

£z

£200

mee

OD
ELENA
dOOT

HAO

a

pens

en
oe

°°

QNn09
gay,

iMErEad

LIOSY
OL

uro1a

ENSIANOD
‘owaz-Now
ar

ZOuVOTS
TNDIS
tas
5

Cs

;

papaya
BR
OLNT
2aNLS

aes

ge

aa

gownos
MHL
Lz0

oe

a

|

§TOI@
uaq¥o
MOTH
2a0

alais

aoe

100

Be
ag

®-

MOVE

WaINTOd
aanis©

ota
aoa
xis
ne
MOL
i

By

aw

a900

oe

MD

ee

;

ENTGNOY
YOSHD

WEENE.cNyY
==

MDDTa
«syed

Be.
a

9G02

a900-

ee
ee

ee

ee
eee

"ROH
o2

uisuirt
=

 SUIG
WNOd
LHDIY
LALNS

vasntvaritvarat
yar

BOSS
Ye
OY

ye

ee

69000

DE

Ie
a

So

Gata
TERRVL
<=

 -AIDIG
Waco.
MOL

‘owszZ
a1

1d

BOT

Bors

90.28
29000

pa

NEE

es

ES
oxress
OMS
<=.

(SVL

AOT-HOIE
INaNTTaWOO
—

A‘OVIE“Tn

=

oes

ae

aS

£9

5900

yy

ose

eh

Gee

a

as

SLIDIG
GG
OMI

HOLAS
ee

axto

“

¢

OR

OV

E900

BR
ed

ee

0S

gOS

oe
oe

oe

SMS
GDA
Ok

MELNTOR
12

aad
oa
ot

wax

tea

ee

eee
ee

ere

ONTULSGoa
HOUd
LIOTG

‘TWweroaa
aa
ge

orp

ee
:

oR

BORG

pe

oe

eee

ISHL
40

ONT
ee

:

Axa’
Ka

“Otley
94
SE

9D
cE

0s00

oS

:

.

a

s

xe

—-MONEINOD
‘ONNZ-NOMdt

aRHN
MNT

OTOH

9z_

COO

Se
“ee
ree

va

“ams

Se

HIONTT
ual
iva

LNAWANOS
Co

IRS
Rd

aa

08sec
Te
ND

6500
es

ee
ee

:

MALOVEVHO
'TIld
HHL
dN

A9ia
=

a‘

wHOTHa
«=

var

 -g0'ee

VV

E00

se
GE

Sr

ee

:

 €ID1@
SHOLS

‘OWNZ-NON
AI

SMOLS.

NG”
 20°%

:

80
92,

6500

eee
:

ees

DNTELS
qHL

puganoo

aKa

_

ova

BONVOLAINOIS
L821

ESE
nosy

20"

es
GS

4600

ee

Wowas
VST

waiovuvio
THA

meaBLVA
Mr

ELOVEVED
TILA
WO

WALOvEWHO.
1198¥
qwois

*

206

eT

7
gurais
Gndino
MHL
LV

aay“

ONTELS

Ces

20°8t

e

ce

Pp

OT

Oe

Be

‘ONTELS
COG

OL

INIOd

«ULSD

SO
IVA

ITI
qu

1399

Naa

:

QOGIXaN
usd

‘uta
POLE

ae

:

Dok

ee

os

:

os

:

a0

.

-

sage

Te

te

a

-MONVOIAINOIS
Las

“Tvynba
dl

ADISUES
«USE

BOSE

ER
TOO

ee

as
-

ONTLS
ee

LWHANOD
OL

ANIINON
Wh

SIDIG

UVINOME
“AMOI
AI

=

CLIO
OTR

o

COE

20
SZ

VOD

ORE

ogee

ees

;

6

BELOVEVHD
IIOSV

‘YNOIH
aI

=

=(i*sT'TOSV
IE

ee

ee
ee

gS

@
“muava

|

HL
NI

3AOW
GAY

AAG

"-SEA@
40

SdAL
LVHA

BqTONG.
=

TSE

EHD

OEE

at

18

800

GSS
he

HIONS1
NWALIVE
GWOT.
=

HAG

MWHLIVE
129

RYO

WOT

EXAM

Z0°ZE

_

¥¥
9¥

9400

oie

eee

-

gNIMLS
Lnadno
OL

INI0d
«=

NTU

oe

 BOTE

me

bos

@

NUGLLVA
LD.

NWALDV

SONLINOD
Ny.

waLOVUYED
NUALIVA
ixan
aHL
Lad

*

-ZO40€

.

.

os

:

wee

:

:

ergs

“py
os

os

cat
ee

ei
a9

900

ta

MENG
ONTETS
ONT
WLLL

0°9

4a
ce

9
He

=

it can help by de

- This colum vv

— DAsasters,in’ ineresia

© & 8.2
- -Notes

oeAsBB-- CautionMessages

-

dmstruction CBA ¢

use of one level

AssemblerUsers Guide

oS

8-0~ -AssemblerErrorMessages.
‘The assemblerperforms:extensive error checkingwhileprocessingine

source input. The philosophybehind the error handler is that the ee
ke a programmer write perfect . programs, puto

assembler should assist the programmer in atayingout of trouble. Of
course, no assembler ant

cting as many faults es possible, and by making
unclesn coding practices difficult. To this. end, the assembler forces

- certain conventions, such

explicitly declared a prohibitingdata references into
dictionaries. the

et

ges pro

large extent self
tee

:

Bel|-~MessageFormat
“Rech:error. fees includesa

, columnnulber;whichie the column
was looking at when the error was detected.

4 ormallypointe at the end of the. symbol or
oe however, in certain exceptional cases;

the column—countermay beseveralcolumnsdifferent‘than the ites in

that the statement sc

expression foundto be errot

error. =

In the descriptionof ‘the. error messages,the tern "pointediten"
refers to the item
been divided into

order:of ‘sefvertty:
ase

“Notesare.

as requiring procedure entry pointe| to be
ture

ing the columa counter. Assembler errors have ee

asses: Notes; Cautions,Warnings,Sttore,and

oo wedwhen,the‘aedenblarhas” pisces: a valid “but es

unlikelyoperation. For example, it ie entirely valid to use a
conditional branch ine uction with an offset of zero. Since this _

- vesults in two iden
-

operation unlikely. ot

Zero” is produced.oe

ee, Cattions- are
a thatmay produce une

for cross assembled Fatiily instructions. For example, the 6800

when run on a 6800

4 SystemStack"Hepence:
oe

-8.4~Warning
Messages

ae Warningi
2 that may ptoduce. tin

the generation of
its. For. example,4£ an instruction

tipare
B

to A) does not generate a memory reference —
‘processor while the cross aseembled inetructions make
; the syatemstack. ‘ThecautionLee ‘Use of

@l branch paths, thé assembler considers the = __
hisenee the note arenes

:

Seeanek‘Offset is

e whenthe assemblerhas detected«‘conditioncope

fects. These messagesnormally occur

fe

producedWien« gontitionhesbeendeteccelos
an eight bit value and the expression suppliedfor —

,

that velue has more than eight bite of significance, it may or may not
constitute an error. In this case the warningmeneage“hemetiave.Value
_Beoneneeswouldbemetered

Assembler Users Guide

8.5 ~ Error Messages

Error messages are producedwhen the assembler has detected an |invalid but not. necessarily fatal condition. For example, 1f an_Anstruction references an undefined symbol, the code produced for this —Statement is certainly invalid but other statements are unaffected. In_this case the error me ssage "Undefined Symbol Referencedin Expression"—would be produced. wes

Re oe
—s

8.6 ~ Disaster Messages

6

are producedwhen the assembler has detected acondition which willcause code subsequentlyproduced to be invalid. |For example, if the. symbol table overflows available memory,allSubsequent labels will femain undefined and not be placed in the symboltable. There is little chance of the produced code being anywherenearcorrect. The disaster message "Insufficient Memoryto Define Symbol" is

Disaster messages

produced.

The following table is. a complete list “of the error messagesproduced by the assembler. They have been listed in numerical order oferror and are not necesearily grouped by function or cause. 7

.
-

Error- - ‘UndefinedMnemonicOperation.Code
ee Theassemblercouldnot find the pointed

—

em in veither a
ao ite. mnenionic ‘table or in the macro direc: Five no-op

instructions:are generatedin dewof the mended(wpdes
a

Error.< PreviouslyDefinedSynbol
S

Assembler Users Guide

10 Error
~ Label Requiredfor This Operation |

The. current statement contains an assembler directivethat a.
> Feautrasa label and none has been specified.

ll Error- OperandRequiredfor This Operation
. “Thecurrent. statenent containean assembler directivethat

Fequires:an operand andnone has been
epecifted< es

“12 =~ Errog - “InvalidTerminatorforIndirection
|

The| assembler was attempting to process. an. ‘operand
Specifying indirect addressing when a terminator character

was encounteredprior to the closing indirectionbracket.
_

“13 x Error- -RegistersNot Same‘Size

UAtransferor exchange instruction specifiedtwo registersthat were not both eight bit or both sixteen bit a

registers. : :

14 ~- Error - Forced SignificanceInvalid in ‘ImmediateMode
An ‘opérendspecifyingdmmediateaddressingalso.specified
a forced significance. Immediate mode. SignificanceTeAmplicit,with the instruction.being processed.Boe

1S a

Warning- -DirectReferenceMayBe Invalid
An ‘operationusing| an ‘abeoluteaddreseingaoe has ane
operand that forces direct addressing. The assembler has
determined that extendedaddressingis

; Peamired,fo: reach:
2

target address.
—

16 — Error - Index Bage higietel:Required
Indexed|‘addressing_ was specified,but ae nitedesignator. followedthe commas.- ee, ae

L7 sme Error- Predec InvalidwithPCRIndexing
“Indexedaddressing_

was) specified- vada.the pesteer
predecrementmode, but the register deaigantorSi oethe Programcounter.

- 18 = Error- ~

Predec Tavalidwith AccumulatorotfectIndexing
|

Indexed—addressingwas “specifiedusing‘the| _cegister -

predecrement mode. but an accumulator:offset
specified:

: ee as

= BG =

was

a oe addpene was“specified‘ubing:both the raglecer oe
__ Predecrementmmodeand the registerpostincrementmode.—

fe

I a e+ Sincethis sfeiancyneybe artesinvatheoutcome’of the Japdi
' S

Assembler Users Guide

29

30

31

32

33

34

35

36

37

Error ~ Indexing Specified with Immediate Addressing

Immediate addressing mode was specified, but an index

register designator was located or implied. by the

expression.

Warning - Maximum Negative Number Negated to Zero

While the assembler was evaluating an expression, a

maximum negative number was negated. The resuling two’s
compliment overflow forced a zero result.

Error =~ Operator Stack Overflow

The current expression contains operators nested too. deep
for the assembler evaluator to parse.

Error — Value Stack Overflow

The current expression has too many terms for the
assembler evaluator to parse.

Error ~ Operator Encountered Out of Context

The assembler was parsing an expression and expected a

value token when an operator or terminator was

encountered.

Error ~ Missing Right Parentheses in Expression

The pointed expression has more left parentheses than

right parentheses.

Error ~ Too Many Right Parenthesis in Expression

The pointed expression has more right parentheses than

left parentheses.

Error ~- Invalid Binary Operator in Expression

The pointed character string was encountered in the
context of a binary operator and is not a valid binary
operator.

©

Error ~ Invalid Unary Operator in Expression

The pointed character string was encountered in the
context of a unary operator and is not a valid unary
Operator.

~ 8-6 ~

ae:

ae

39

40

41

42

43

44

45_

-Yeplaced with the 6809 instruction CWAIL $EF. The

“Assembler Users Guide

38 =~ Warning - Use of WAI is not Equivalent to CWAI

A 6800 WAI Mnemonic has been encountered and cross
assembled into a conditioned wait instruction. Note that
the 6800 instruction sequence NOP; CLI; WAI; should be

cross~assembled sequence of instructions can result in an

interrupt occurring after the execution of the CLI
instruction but before the WAI.

a

The assembler will allow any number of inclusion files,
however, the inclusion count is. two decimal digits long .-

Disaster ~ InsufficientMemory to Define Symbol

The assembler found that there was insufficient memory. ‘to
insert the label ‘of the current statement into the symbol
table.

Disaster~ Insufficient Memoryfor Library Inclusion

The assemblerfound that there was insufficientmemory to.open the library inclusion file.

Error ~ Library File Could Not Be Opened

The specified library file did not exist on disk, or there
was a directory error resulting id failure of the open onthe library file.

Error - LibraryFile Specification Invalid
The file specification on the library statement was
invalid. :

:

Error - Library File Specification Required

The library statement requires a file specification.
Warning- LibraryInclusion Numbers May Be Invalid

If more than 99 inclusions are used, the inelusionnumberwill no longer be valid.

Warning - Multiply CausedTwo’ sComplementOverflow
The product of two sixteenbit numbers . could not be
contained in the sixteen bit result.’ The least —

significant sixteen bits of the ‘productwas used as the -

result.

oe 8~7 ~

oe

Assembler Users Guide

46

47

48

49

50

51

52

53

54

Warning - Divide by Zero

The divisor value was found to be zero and the assembler
has substituted the maximum positive number as the result.

Error ~ Absolute Value Required by ORG

The ORG directive forces the program counter to become
absolute hence the value of the expression .on the ORG
statement must have a relocatability attribute of

absolute. :

Error - Absolute Value Required by RMB

The RMB directive requires a non-relocatable length for
its

operand« :

Caution~ E Condition Flag Undefined Except on Stack

The ANDCC or ORCC operation referenced the "E" condition

flag which is not meaningful except on the stack.

Error - Attempt to Redefinea Protected Symbol

The current statement attempts to redefine the value of a

protected symbol.

Warning - Label Subsequently Redefined

This is the first occurance of a label that is

subsequently redefined.

Disaster - Code Generation Pass Phasing Error Detected

This error indicates an internal malfunction in the
assembler and should be reported at once to Southwest
Technical. Copies of the program generating this error

along with ail releventdata should be includedwith the
report.

Error - Undefined Node Referenced in Structure
The assemblerwas processing a qualified data name when it
encountered a node name that was not found in the

_Structure’s dictionary.

Error - Null Node Name Invalid in Structure

The assembler was processing a qualified data name when it.
encountered a null symbol or terminator characters

-~8-8 -

ay

OS

att,

Assembler Users Guide

55 ==

Disaster~- Insufficient Memory to Define Procedure

Insuffietentmemory remained in the assemblerdictionary _

space to allocate. space for a new procedure or data

dictionaryand: the new dictionary has not been. defined.
56 ——

Disaster -

Insufficient Memory to DefineProgramCounter
Se

Insufficient‘memory remained in the assemblerdictionarypace. to allocate a new program counter.
57 == Error- - InsufficientMemoryfor DataDictionary

 msutftedent‘memoryremained in the assemblerdictionary
Space to .allacate space for a new qualified data

_ eedictionary and the new qualified name has- not. been SS es oo

defined. oS

ae

ae

58 — Error ~ HightBit Index Offset will be Ineuffictent
Constantoffset indexed addressingwas

8

specifiedwith the -
offset forced to eight bits. ‘The assembler has determined
that this offset will be insufficient to” allow the.
instruction to reach its target.

59 — Error -
- ForcedShort.Branchcannot Reach‘Targeta

a ws The expression‘fieldof a branchinstructionhas. forcedCRE Sn the offset to eight bits. The assembler has determined
_ that this offset is insufficient to allow‘the,Anetruction2-

te reach its target.
60 = Error~Branchout of Range

‘Theassemblerrange-checkoption was specifiedand.thecurrent short branch. cannotreach. its target.
: 61 —~Error| -

- AbsoluteValueRequired for MB

= “theFMB directiverequires a non-relocatablelengthfor
its first operand. ce

a :

62 -- Error - | ForwardReferenceInvalid for.FMB...

“The ‘lengthexpression of an FMB.directive contained
;

a WOE

ks
_

forward reference. Since the reference may be affected by
the outcome of the FMB directive, this constitutes:an

:

invalid circularreference.
-

63 —~Error- - ‘SixteenBit. PrecisionCannotbeForcedforPB
,

The value expression of an FMB directive.has a forced -
. @ixteen bit precision. The assembler has used ‘the—

| doworndar"ohehebits of the

expression:as the fill. bytes oe

ga se

Assembler Users Guide

64

65

66

67

68

69

70

71

72

Error = Invalid Option Specified

‘The specified option is invalid for the OPTdirective and
has been ignored.

Error = Programmer-Signalled Error

An error. message has been generated by an ERRor ERRIF
conditional assembly statement.

A push or pull operation was specified with a null

Error ~— Specified Register Invalid as Index Base

Indexed addressing mode was specified but. the “register
specified as the index address base cannot be used for

.

indexed addressing.

Error - Operand Required for Indirection

The assembler was processing an operand specifying —
indirect addressing when it encountered and end of

statement operator. Null operands| are not valid when
using indirect addressing.

Warning - Immediate Value Truncated _

The assembler has truncated significant bits from a Q
sixteen bit expression to obtain the required eight bit

immediate value.

Error - Leading Bracket Required for Indirection

The pointed expression has terminated with a closing right
bracket indicating indirect addressing mode, but no

leading left bracket preceeded the expression.

Warning - No Registers Specified in List

_Yegister list.

Error = Parent Reference Invalid in Global Dictionary
An explicit parental reference was encountered while

—

processing code in the global dictionary where onlylocal
or ‘global references are valid. —
Error - Directive Requires Primary Statement

An assembler directive was encountered in the contextof ae
secondary statement. Directives must always be specified:
as primary statements.

~ 8-10 =

oe

coy

a

999 +

73 <=

“4

A’ USE statement specifies an identifier thathas not been-

a 76 ~~ Warning = MissingEnd Statementa,

_

Assembler UsersGuide
:

Warning - Absolute Program Counter Selected

Too many levels of USE Previous were specified. The
default absolute program counter has been selected.

‘Error= Invalid Program CounterSpecified

previously defined as a program counter name. —

Note - Branch Offsetis Zero
}

A branch instructionwas encountered with a computed
_ Offset value of zero. If full optimization was selected,

the entire branch instruction 1s supressed.

‘Theassemblerhas detected an end of file condition prior
to. processing the end statement for the MAIN procedure. |

.

No transfer address has been assigned to the object code
|

: module. oe.

we :

ay
oe ee

: .

- ‘This. error indicates an internal malfunction in_ the |

Disaster - Invalid Error Address

assembler and should be reported at once to Southwest
Technical. Copies. of the program generating this error —
along with all relevent data should be included with the

report eo .
Deg

= 8-11 me

